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Abstract. Inspired by the matching of supply to demand in logistical prob-
lems, the optimal transport (or Monge–Kantorovich) problem involves the

matching of probability distributions defined over a geometric domain like
a surface or manifold. In its most obvious discretization, optimal transport

becomes a large-scale linear program, which typically is infeasible to solve ef-

ficiently on triangle meshes, graphs, point clouds, and other domains encoun-
tered in graphics and machine learning. Recent breakthroughs in numerical

optimal transport, however, enable scalability to orders-of-magnitude larger

problems, solvable in a fraction of a second. Here, we discuss advances in
numerical optimal transport that leverage understanding of both discrete and

smooth aspects of the problem. State-of-the-art techniques in discrete optimal

transport combine insight from partial differential equations (PDE) with con-
vex analysis to reformulate, discretize, and optimize transportation problems.

The end result is a set of theoretically-justified models suitable for domains

with thousands or millions of vertices. Since numerical optimal transport is a
relatively new discipline, special emphasis is placed on identifying and explain-

ing open problems in need of mathematical insight and additional research.

1. Introduction

Many tools from discrete differential geometry (DDG) were inspired by practi-
cal considerations in areas like computer graphics and vision. Disciplines like these
require fine-grained understanding of geometric structure and the relationships be-
tween different shapes—problems for which the toolbox from smooth geometry can
provide substantial insight. Indeed, a triumph of discrete differential geometry is its
incorporation into a wide array of computational pipelines, affecting the way artists,
engineers, and scientists approach problem-solving across geometry-adjacent disci-
plines.

A key but neglected consideration hampering adoption of ideas in DDG in
fields like computer vision and machine learning, however, is resilience to noise
and uncertainty. The view of the world provided by video cameras, depth sensors,
and other equipment is extremely unreliable. Shapes do not necessarily come to a
computer as complete, manifold meshes but rather may be scattered clouds of points
that represent, e.g., only those features visible from a single position. Similarly, it
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may be impossible to pinpoint a feature on a shape exactly; rather, we may receive
only a fuzzy signal indicating where a point or feature of interest may be located.
Such uncertainty only increases in high-dimensional statistical contexts, where the
presence of geometric structure in a given dataset is itself not a given. Rather
than regarding this messiness as an “implementation issue” to be coped with by
engineers adapting DDG to imperfect data, however, the challenge of developing
principled yet noise-resilient discrete theories of shape motivates new frontiers in
mathematical research.

Probabilistic language provides a natural means of formalizing notions of un-
certainty in the geometry processing pipeline. In place of representing a feature or
shape directly, we might instead use a probability distribution to encode a rougher
notion of shape. Unfortunately, this proposal throws both smooth and discrete con-
structions off their foundations: We must return to the basics and redefine notions
like distance, distortion, and curvature in a fashion that does not rely on knowing
shape with infinite precision and confidence. At the same time, we must prove that
the classical case is recovered as uncertainty diminishes to zero.

The mathematical discipline of optimal transport (OT) shows promise for mak-
ing geometry work in the probabilistic regime. In its most basic form, optimal
transport provides a means of lifting distances between points on a domain to dis-
tances between probability distributions over the domain. The basic construction
of OT is to interpret probability distributions as piles of sand; the distance between
two such piles of sand is defined as the amount of work it takes to transform one pile
into the other. This intuitive construction gave rise to an alternative name for OT in
the computational world: The “earth mover’s distance” (EMD) [RTG00]. Indeed,
the basic approach in OT is so natural that it has been proposed and re-proposed in
many forms and with many names, from OT to EMD, the Mallows distance [LB01],
the Monge–Kantorovich problem [Vil03], the Hitchcock–Koopmans transportation

problem [Hit41, Koo41], the Wasserstein/Vaserštĕin distance [Vas69, Dob70],
and undoubtedly many others.

Many credit Gaspard Monge with first formalizing the optimal transport prob-
lem in 1781 [Mon81]. Beyond its early history, modern understanding of optimal
transport dates back only to the World War II era, through the Nobel Prize-winning
work of Leonid Kantorovich [Kan42]. Jumping forward several decades, while
many branches of DDG are dedicated to making centuries-old constructions on
smooth manifolds work in the discrete case, optimal transport has the distinction
of continuing to be an active area of research in the mathematical community whose
basic properties are still being discovered. Indeed, the computational and theoret-
ical literature in this area move in lock-step: New theoretical constructions often
are adapted by the computational community in a matter of months, and some key
theoretical ideas in transport were inspired by computational considerations and
constructions.

Here, we aim to provide some intuition about transport and its relevance to
the discrete differential geometry world. While a complete survey of work on OT
or even just its computational aspects is worthy of a full textbook, here we fo-
cus on the narrower problem of how to “make transport work” on a discretized
piece of geometry amenable to representation on a computer. The primary aim is
to highlight the challenges in transitioning from smooth to discrete, to illustrate
some basic constructions that have been proposed recently for this task, and—most
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importantly—to expose the plethora of open questions remaining in the relatively
young discipline of computational OT. No-doubt incomplete references are pro-
vided to selected intriguing ideas in computational OT, each of which is worthy of
far more detailed discussion.

Additional reference. Those readers with limited experience in related disci-
plines may wish to begin by reading [Sol17], a shorter survey by the author on the
same topic, intended for a generalist audience.

Disclaimer. These notes are intended as a short, intuitive, and extremely infor-
mal introduction. Optimal transport is a popular topic in mathematical research,
and interested readers should refer to surveys such as [Vil03, Vil08] for more com-
prehensive discussion. The recent text [San15] provides discussion targeted to the
applied world. A few recent surveys also are targeted to computational issues in
optimal transport [LS18, PC19].

The author of this tutorial offers his sincere apology to those colleagues whose
foundational work is undoubtedly yet accidentally omitted from this document. A
“venti”-sized caffeinated beverage is humbly offered in exchange for those readers’
forgiveness and understanding.

2. Motivation: From Probability to Discrete Geometry

To motivate the construction of optimal transport in the context of geometry
processing, we begin by considering the case of smooth probability distributions
over the real numbers R. Here, the geometry is extremely simple, described by
values x ∈ R equipped with the distance metric d(x, y) := |x− y|. Then we expand
to define the transport problem in more generality and state a few useful properties.

2.1. The Transport Problem. Define the space of probability measures over
R as Prob(R). Without delving into the formalities of measure theory (see [Jon01,
Coh80] for formal introductions), these are roughly the functions µ ∈ Prob(R)
assigning probabilities to subsets S ⊆ R such that µ(S) ≥ 0 for all measurable

S, µ(R) = 1, and µ(∪ki=1Si) =
∑k
i=1 µ(Si) for disjoint sets {Si ⊆ R}ki=1. Under

the stronger assumption of absolute continuity, µ admits a distribution function (or
probability density function) ρ(x) : R→ R assigning a probability density to every
point:

µ(S) =

∫
S

ρ(x) dx.

The function ρ(x) reflects the familiar notion of a probability distribution, like a
Gaussian bell curve over the real numbers R.

Measure theory, probability, and statistics each are constructed from slightly
different interpretations of the set of probability distributions Prob(R). Adding to
the mix, we can think of optimal transport as a geometric theory of probability. In
particular, as illustrated in Figure 1, roughly a probability distribution over R can
be thought of as a superposition of points in R, weighted by the function ρ. We can
recover a (complicated) representation for a single point x ∈ R as a Dirac δ-measure
centered at x, a probability distribution whose complete mass is concentrated at x.

Applying a physical perspective, we can also think of distributions geometrically
using a physical analogy. Suppose we are given a bucket of sand whose total mass
is one pound. We could distribute this pound of sand across the real numbers by
stacking it all at a single point (a δ-measure), concentrating it at a few points, or
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Figure 1. One-dimensional examples of probability distributions
used to encode geometric features with uncertainty. A probabil-
ity distribution like a Gaussian g with mean x and standard de-
viation σ can be thought of as a “fuzzy” location of a point in
x ∈ R with uncertainty σ. As a distribution sharpens about its
mean to a δ-function δy, it encodes a classical piece of geometry:
a point y ∈ R. Distributional language, however, is fundamen-
tally broader, including constructions like the superposition of two
points z1 and z2 or combining a point and a fuzzy feature into a
single distribution ρ.

ρ1 ρ2 ρ3 ρ4ρ0

Figure 2. The distributions ρ0, . . . , ρ4 are equidistant with re-
spect to the L1 and KL divergences, while the Wasserstein distance
from optimal transport increases linearly with distance over R.

spreading it out smoothly. The height of the pile of sand expresses a geometric
feature: Lots of sand at a point x ∈ R indicates we think a feature is located at x.

If we wish to deepen this analogy and lift notions from geometry to the space
Prob(R), perhaps the most basic object we must define is a notion of distance
between two distributions µ0, µ1 ∈ Prob(R) that resembles the distance d(x, y) =
|x− y| between points on the underlying space. Supposing for now that µ0 and µ1

admit density functions ρ0 and ρ1, respectively, a few candidate notions of distance
or divergence come to mind:

L1 distance: dL1
(ρ0, ρ1) :=

∫ ∞
−∞
|ρ0(x)− ρ1(x)| dx

KL divergence: dKL(ρ0‖ρ1) :=

∫ ∞
−∞

ρ0(x) log
ρ0(x)

ρ1(x)
dx.
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ρ1

ρ0

ρ1

π

(a) Source and target (b) Transport map

Figure 3. Two distributions over the real line (a) and the re-
sulting transport map (b). In (b), the box is the product space
[0, 1]× [0, 1], and dark values indicate a matching between ρ0 and
ρ1.

These divergences are used widely in analysis and information theory, but they are
insufficient for geometric computation. In particular, consider the distributions in
Figure 2. The two divergences above give the same value for any pair of different
ρi’s! This is because they measure only the overlap; the ground distance d(x, y) =
|x− y| is never used in their computation.

Optimal transport resolves this issue by leveraging the physical analogy pro-
posed above. In particular, suppose our sand is currently in arrangement ρ0 and
we wish to reshape it to a new distribution ρ1. We take a steam shovel and begin
scooping up the sand at points x in ρ0 where ρ0(x) > ρ1(x) and dropping it places
where ρ1(x) > ρ0(x); eventually one distribution is transformed into the other.

There are many ways the steam shovel could approach its task: We could move
sand efficiently, or we could drive it miles away and then drive back, wasting fuel
in the process. But assuming ρ0 6= ρ1, there is some amount of work inherent in
the fact that ρ0 and ρ1 are not the same. We can formalize this idea by solving for
an unknown measure π(x, y) determining how much mass gets moved from x to y
by the steam shovel for each (x, y) pair. The minimum amount of work is then

(1) W1(ρ0, ρ1) :=


minπ

∫∫
R×R π(x, y)|x− y| dx dy Minimize total work

s.t. π ≥ 0 ∀x, y ∈ R Nonnegative mass∫
R π(x, y) dy = ρ0(x)∀x ∈ R Starts from ρ0∫
R π(x, y) dx = ρ1(y)∀y ∈ R Ends at ρ1.

This optimization problem quantifies the minimum amount of work—measured as
mass π(x, y) times distance traveled |x− y|—required to transform ρ0 into ρ1. We
can think of the unknown function π as the instructions given to the laziest possible
steam shovel tasked with dropping one distribution onto another. This amount of
work is known as the 1-Wasserstein distance in optimal transport; in one dimension,
it equals the L1 distance between the cumulative distribution functions of ρ0 and
ρ1. An example of ρ0, ρ1, and the resulting π is shown in Figure 3.
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Generalizing slightly, we can define the p-Wasserstein distance:

(2) [Wp(ρ0, ρ1)]p :=


minπ

∫∫
R×R π(x, y)|x− y|p dx dy

s.t. π ≥ 0 ∀x, y ∈ R∫
R π(x, y) dy = ρ0(x)∀x ∈ R∫
R π(x, y) dx = ρ1(y)∀y ∈ R.

In analogy to Euclidean space, many properties of Wp are split into cases p < 1,
p = 1, and p > 1; for instance, it satisfies the triangle inequality any time p ≥ 1.
The p = 2 case is of particular interest in the literature and corresponds to a “least-
squares” version of transport that minimizes kinetic energy rather than work (see
§2.4). Generalizing (2) even more, if we replace |x− y|p with a generic cost c(x, y)
we recover the Kantorovich problem [Kan42].

It is important to note an alternative formulation of the transport problem (2),
which historically was posed first but does not always admit a solution. Rather
than optimizing for a function π(x, y) with an unknown for every possible (x, y)
pair, one could consider an alternative in which instead the variable is a single
function φ(x) that “pushes forward” ρ0 onto ρ1; this corresponds to choosing a
single destination φ(x) for every source point x. In this case, the objective function
would look like

(3)

∫ ∞
−∞
|φ(x)− x|pρ0(x) dx,

and the constraints would ask that the image of ρ0 under φ is ρ1, notated φ]ρ0 =
ρ1. While this version corresponds to the original version of transport proposed
by Monge, sometimes for the transport problem to be solvable it is necessary to
split the mass at a single source point to multiple destinations. A triumph of
theoretical optimal transport, however, shows that π(x, y) is nonzero only on a
“graph” {(x, φ(x)) : x ∈ R} whenever ρ0 is absolutely continuous, that is, whenever
we match probability density functions rather than more general measures, linking
the two problems.

2.2. Discrete Problems in One Dimension. So far our definitions have
not been amenable to numerical computation: Our unknowns are functions π(x, y)
with infinite numbers of variables (one value of π for each (x, y) pair in R × R)—
certainly more than can be stored on a computer with finite capacity. Continuing
to work in one dimension, we suggest some special cases where we can solve the
transport problem with a finite number of variables.

Rather than working with distribution functions ρ(x), we will relax to the more
general case of transport between measures µ0, µ1 ∈ Prob(R). Define the Dirac δ-
measure centered at x ∈ R via

δx(S) :=

{
1 if x ∈ S
0 otherwise.

It is easy to check that δx(·) is a probability measure.
Suppose µ0, µ1 ∈ Prob(R) can be written as superpositions of δ measures:

(4) µ0 :=

k0∑
i=1

a0iδx0i
and µ1 :=

k1∑
i=1

a1iδx1i
,

where 1 =
∑k0
i=1 a0i =

∑k1
i=1 a1i and a0i, a1i ≥ 0 for all i. Figure 4(a) illustrates

this case; all the mass of µ0 and µ1 is concentrated at a few isolated points.
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µ0

µ1

µ0

µ1

(a) Fully discrete transport (b) Semidiscrete transport

Figure 4. Discrete (a) and semidiscrete (b) optimal transport in
one dimension.

In the case where the source and target distributions are composed of δ’s, we
only can move mass between pairs of points x0i 7→ x1j . Taking Tij the total mass
moved from x0i to x1j , we can solve for Wp

p as

(5) [Wp(µ0, µ1)]p =


minT∈Rk0×k1

∑
ij Tij |x0i − x1j |p

s.t. T ≥ 0∑
j Tij = a0i∑
i Tij = a1j .

This is an optimization problem in k0k1 variables Tij : No need for an infinite
number of π(x, y)’s! In fact, it is a linear program solvable using many classic
algorithms, such as the simplex or interior point methods [BV04].

There is a more subtle case where we can still represent the unknown in optimal
transport using a finite number of variables. Suppose µ0 ∈ Prob(R) is a superposi-
tion of δ measures and µ1 ∈ Prob(R) is absolutely continuous, implying µ1 admits
a distribution function ρ1(x):

(6) µ0 :=

k∑
i=1

aiδxi and µ1(S) :=

∫
S

ρ1(x) dx.

This situation is illustrated in Figure 4(b); it corresponds to transporting from a
distribution whose mass is concentrated at a few points to a distribution whose
distribution is more smooth. In the technical literature, this setup is known as
semidiscrete transport [AHA92, GM96, Mér11].

Returning to the transport problem in (2), in this semidiscrete case we can think
of the coupling π as decomposing into a set of measures π1, π2, . . . , πk ∈ Prob(R)
where each term in the sum (6) has its own target distribution: δxi 7→ πi. As a
sanity check, note that µ1 =

∑
i aiπi(x).

Without loss of generality, we can assume the xi’s are sorted, that is, x1 < x2 <
· · · < xk. Suppose 1 ≤ i < j ≤ k, and hence xi < xj . In one dimension, we can
convince ourselves that the optimal transport map π should never “leapfrog” mass,
that is, the delivery target of the mass at xi when transported to ρ1 should be to
the left of the target of mass at xj , as illustrated in Figure 5. This monotonicity
property implies the existence of intervals [b1, c1], [b2, c2], . . . , [bk, ck] such that πi
is supported in [bi, ci] and ci < bj whenever i < j; the mass aiδxi is distributed
according to ρ1(x) in the interval [bi, ci].

The semidiscrete transport problem corresponds to another case where we can
solve a transport problem with a finite number of variables, the bi’s and ci’s. Of
course, in one dimension these can be read off from the cumulative distribution
function (CDF) of ρ1, but in higher dimensions this will not be the case. Instead,
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Figure 5. Solving 1D semidiscrete transport from Figure 4(b);
every Dirac δ-function mass in the source µ0 gets mapped to a
contiguous interval worth of mass in the target µ1.

the intervals [bi, ci] will be replaced with power cells, a generalization of a Voronoi
diagram (§4.3).

While our discussion above gives two cases in which a computer could plausibly
solve the transport problem, they do not correspond to the usual situation for DDG
in which the geometry itself—in this case the real line R—is discretized. As we will
see in future sections, there currently does not exist consensus about what to do in
this case but several possible adaptations have been proposed.

2.3. Moving to Higher Dimensions. We are now ready to state the op-
timal transport problem in full generality; this transition will require somewhat
more complicated notation but builds on the one-dimensional intuition introduced
in previous sections. Following [Vil03, §1.1.1], take (X,µ) and (Y, ν) to be proba-
bility spaces, paired with a nonnegative measurable cost function c(x, y). Define a
measure coupling π ∈ Π(µ, ν) as follows:

Definition 1 (Measure coupling). A measure coupling π ∈ Prob(X × Y ) is a
probability measure on X × Y satisfying

π(A× Y ) = µ(A)

π(X ×B) = ν(B)

for all measurable A ⊆ X and B ⊆ Y . The set of measure couplings between µ and
ν is denoted Π(µ, ν).

With this piece of notation, we can write the Kantorovich optimal transport
problem as follows:

(7) OT(µ, ν; c) := min
π∈Π(µ,ν)

∫∫
X×Y

c(x, y) dπ(x, y)

Here, we use some notation from measure theory: dπ(x, y) denotes integration
against probability measure π. If π admits a distribution function p(x, y), then we
can write dπ(x, y) = p(x, y) dx dy; the more general notation allows for δ measures
and other objects that cannot be written as functions.

We highlight a few interesting special cases below:
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Discrete transportation. Suppose X = {1, 2, . . . , k1} and Y = {1, 2, . . . , k2}.
Then, µ ∈ Prob(X) can be represented as a vector v ∈ Sk1 and ν ∈ Prob(Y ) can
be represented as a vector w ∈ Sk2 , where Sk denotes the k-dimensional probability
simplex:

(8) Sk :=

{
v ∈ Rk : v ≥ 0 and

∑
i

vi = 1

}
.

The cost function becomes discrete as well and can be written as a matrix C = (cij).
After simplification, the transport problem between v ∈ Sk1 and w ∈ Sk2 given cost
matrix C becomes

(9) OT(v, w;C) =


minT∈Rk1×k2

∑
ij Tijcij

s.t. T ≥ 0∑
j Tij = vi ∀i ∈ {1, . . . , k1}∑
i Tij = wj ∀j ∈ {1, . . . , k2}.

This linear program—which has (5) as a special case—is solvable computationally
and is the most obvious way to make optimal transport work in a discrete context.
It was proposed in the computational literature as the “earth mover’s distance”
(EMD) [RTG00]. When k1 = k2 := k and C is symmetric, nonnegative, and
satisfies the triangle inequality, one can check that OT(·, ·;C) is a distance on Sk;
see [CA14] for a clear proof of this property.

Wasserstein distance. Next, suppose X = Y = Rn, and take cn,p(x, y) :=
‖x− y‖p2. Then, we recover the Wasserstein distance on Prob(Rn), defined via

(10) Wp(µ, ν) := [OT(µ, ν; cn,p)]
1/p.

Wp is a distance when p ≥ 1, and Wp
p is a distance when p ∈ [0, 1) [Vil03, §7.1.1].

In fact, the Wasserstein distance can be defined for probability measures over a
surface, Riemannian manifold, or even a Polish space via the same formula.

The Wasserstein distance has drawn considerable application-oriented interest
and aligns well with the basic motivation laid out in §1. Its basic role is to lift dis-
tances between points to distances between distributions in a compatible fashion:
The Wasserstein distance between two δ-functions δx and δy is exactly the distance
from x to y. In §3, we will show how this basic property has strong bearing on sev-
eral computational pipelines that need to lift geometric constructions to uncertain
contexts.

2.4. One Value, Many Formulas. A remarkable property of the transport
problem (7) is the sheer number of equivalent formulations that all lead to the same
value, the cost of transporting mass from one measure onto another. These not only
provide many interpretations of the transport problem but also suggest a diverse
set of computational algorithms for transport, each of which tackles a different way
of writing down the basic problem.

Duality. A basic idea in the world of convex optimization is that of duality, that
every minimization problem admits a “dual” maximization problem whose optimal
value is a lower bound for that of the primal. As with most linear programs, optimal
transport typically exhibits strong duality : The optimal values of the maximization
and minimization problems coincide.
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To motivate duality for transport, we will start with the finite-dimensional
problem (9). We note two simple identities:

max
s∈R

st =

{
0 if t = 0
∞ otherwise

max
s≤0

st =

{
0 if t ≥ 0
∞ otherwise

These allow us to write (9) as follows:

min
T

max
S≤0,φ,ψ

∑
ij

Tij(cij + Sij) +
∑
i

φi

vi −∑
j

Tij

+
∑
j

ψj

(
wj −

∑
i

Tij

) .
The dual problem is derived by simply swapping the min and the max:

max
S≤0,φ,ψ

min
T

∑
ij

Tij(cij + Sij) +
∑
i

φi

vi −∑
j

Tij

+
∑
j

ψj

(
wj −

∑
i

Tij

)
= max
S≤0,φ,ψ

min
T

∑
ij

Tij(cij + Sij − φi − ψj) +
∑
i

φivi +
∑
j

ψjwj


after refactoring.

Since T is unconstrained in the inner optimization problem of the dual, the solution
of the inner minimization is −∞ unless Sij = φi + ψj − cij for all (i, j), that is,
unless the coefficient of Tij equals zero. Since the outer problem is a maximization,
clearly we should avoid an optimal value of −∞ for the inner minimization. Hence,
we can safely add Sij = φi + ψj − cij as a constraint to the dual problem. After
some simplification, this extra constraint allows us to arrive at the dual of (9):

(11)
maxφ,ψ

∑
i[φivi + ψiwi]

s.t. φi + ψj ≤ cij ∀(i, j).
Although we have not justified that it is acceptable to swap a max and a min in
this context, several techniques ranging from direct proof to the “sledgehammer”
Slater duality condition [Sla50] show that the optimal value of this maximization
problem agrees with the optimal value of the minimization problem (9).

As is often the case in convex optimization, the dual (11) of the transport
problem (9) has an intuitive interpretation. Suppose we change roles in optimal
transport from the worker who wishes to minimize work to a company that wishes to
maximize profit. The customer pays φi dollars per pound to drop off material vi to
ship from location i and ψj dollars per pound to pick up material wj from location
j. The dual problem (11) maximizes profit under the constraint that it is never
cheaper for the customer to drive from i to j and ignore the service completely:
φi + ψj ≤ cij .

We pause here to note some rough trade-offs between the primal and dual
transport problems. Since both yield the same optimal value, the designer of a
computational system for solving optimal transport problems has a decision to
make: whether to solve the primal problem, the dual problem, or both simultane-
ously (the latter aptly named a “primal–dual” algorithm). There are advantages
and disadvantages to each approach. The primal problem (9) directly yields the
matrix T , which tells not just the cost of transport but how much mass Tij to
move from source i to destination j; the only inequality constraint is that the en-
tire matrix has nonnegative entries. On the other hand, the dual problem (11)
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has fewer variables, making it easier to store the output on the computer, but the
“shadow price” variables (φ, ψ) are harder to interpret and are constrained by a
quadratic number of inequalities. Currently there is little consensus as to which for-
mulation leads to more successful algorithms or discretizations, and state-of-the-art
techniques are divided among the two basic approaches.

As with many constructions in optimal transport, the dual of the measure-
theoretic problem (7) resembles the discrete case up to a change of the notation.
In particular, we can write

(12) OT(µ, ν; c) :=


supφ∈L1(dµ),

ψ∈L1(dν)

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y)

s.t. φ(x) + ψ(y) ≤ c(x, y)
for dµ-a.e. x ∈ X, dν-a.e. y ∈ Y.

This formula comes from a similar min-max swap, justified by results in convex
analysis [Roc15].

It is worth noting a simplification that appears often in the transport world.
Since µ and ν are positive measures and the overall problem in (12) is a max-
imization, we might as well choose φ and ψ as large as possible while satisfy-
ing the constraints. Suppose we fix the function φ(x) and just optimize for the
function ψ(x). Rearranging the constraint shows that for all (x, y) ∈ X × Y
we must have ψ(y) ≤ c(x, y) − φ(x). Equivalently, for all y ∈ Y we must have
ψ(y) ≤ infx∈X [c(x, y)− φ(x)]. Define the c-transform

(13) φc(y) := inf
x∈X

[c(x, y)− φ(x)].

By the argument above we have

OT(µ, ν; c) = sup
φ∈L1(dµ)

∫
X

φ(x) dµ(x) +

∫
Y

φc(y) dν(y).

This problem is unconstrained, but the transformation from φ to φc is relatively
complicated.

We finally simplify one special case of this dual formula, the 1-Wasserstein dis-
tance, which has gained recent interest in machine learning thanks to its application
in generative adversarial networks (GANs) [ACB17]. In this case, X = Y = Rn
and c(x, y) = ‖x− y‖2. We can derive a bound as follows:

|φc(x)− φc(y)| =
∣∣∣inf
z

[‖x− z‖2 − φ(z)]− inf
z

[‖y − z‖2 − φ(z)]
∣∣∣ by definition

≤ sup
z
|‖x− z‖2 − ‖y − z‖2|

by the identity | inf
x
f(x)− inf

x
g(x)| ≤ sup

x
|f(x)− g(x)|

≤ ‖x− y‖2 by the reverse triangle inequality.(14)
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Furthermore, by definition of the c-transform (13) by taking x = y we have φc(y) ≤
−φ(y), or equivalently φ(y) ≤ −φc(y). Hence,

W1(µ, ν) = OT(µ, ν; c) with the choice c(x, y) := ‖x− y‖2

= sup
φ∈L1(dµ)

∫
Rn
φ(x) dµ(x) +

∫
Rn
φc(y) dν(y) by definition of the c-transform

≤
∫
Rn
φc(x) [dν(x)− dµ(x)] since φ(y) ≤ −φc(y) ∀y ∈ Rn

≤ sup
ψ∈Lip1(Rn)

∫
Rn
ψ(x) [dν(x)− dµ(x)]

where Lip1(Rn) := {f(x) : |f(x)− f(y)| ≤ ‖x− y‖2 ∀x, y ∈ Rn}.

Lip1 denotes the set of 1-Lipschitz functions; the last step is derived from (14),
which shows that ψc is 1-Lipschitz.

In fact, this inequality is an equality. To prove this, take ψ to be any 1-Lipschitz
function. Then,

(15) ψc(y) = inf
x∈Rn

[‖x− y‖2 − ψ(x)] ≥ inf
x∈Rn

[‖x− y‖2 − ‖x− y‖2 − ψ(y)] = −ψ(y),

where we have rearranged the Lipschitz property ψ(x)− ψ(y) ≤ ‖x− y‖2 to show
−ψ(x) ≥ −‖x− y‖2 − ψ(y). Hence,

sup
ψ∈Lip1(Rn)

∫
Rn
ψ(x) [dν(x)−dµ(x)] ≤ sup

ψ∈Lip1(Rn)

∫
Rn
[ψ(x) dν(x) + ψc(y)] dµ(y) by (15)

≤ sup
ψ∈L1(dν)

∫
Rn
[ψ(x) dν(x) + ψc(y)] dµ(y)

since the constraints are loosened

=W1(µ, ν).

This finishes motivating the final formula

W1(µ, ν) = sup
ψ∈Lip1(Rn)

∫
Rn
ψ(x) [dν(x)− dµ(x)].

This convenient identity is used in computational contexts because the constraint
that a function is 1-Lipschitz is fairly easy to enforce computationally; sadly, it does
not extend to other Wasserstein Wp distances, which have stronger uniqueness and
regularity properties when p > 1.

Eulerian transport. The language of fluid dynamics introduces two equivalent
ways to understand the flow of a liquid or gas as it sloshes in a tank. In the
Lagrangian framework, the fluid is thought of as a collection of particles whose
path we trace as a function of time; the equations of motion roughly determine a
map Φt(x) with Φ0(x) = x determining the position at time t ≥ 0 of the particle
located at x when t = 0. Contrastingly, Eulerian fluid dynamics takes the point of
view of a barnacle attached to a point in the tank of water counting the number
of particles that flow past a point x; this formulation might seek a function ρt(x)
giving the density of the fluid at a non-moving point x as a function of time t.

So far, our formulation of transport has been Lagrangian: The transportation
plan π explicitly determines how to match particles from the source distribution
µ to the target distribution ν. Using a particularly clever change of variables,
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ρ0

ρ1

ρ1/4

ρ1/2
ρ1/4

Figure 6. Displacement interpolation from ρ0 to ρ1 explains op-
timal transport between these two densities using a time-varying
density function ρt, t ∈ [0, 1].

a landmark paper by Benamou & Brenier shows that the 2-Wasserstein distance
from (10) over Euclidean space with cost c(x, y) = ‖x− y‖22 can be computed in an
Eulerian fashion [BB00]:

(16) W2
2 (ρ0, ρ1)=


minv(x,t),ρ(x,t)

1
2

∫ 1

0

∫
Rn ρ(x, t) ‖v(x, t)‖22 dA(x) dt

s.t. ρ(x, 0) ≡ ρ0(x) ∀x ∈ Rn
ρ(x, 1) ≡ ρ1(x) ∀x ∈ Rn
∂ρ(x,t)
∂t = −∇ · (ρ(x, t)v(x, t))
∀x ∈ Rn, t ∈ (0, 1)

Here, we assume that we are computing the 2-Wasserstein distance between two dis-
tribution functions ρ0(x) and ρ1(x). This is often referred to as a dynamical model
of transport and can be extended to spaces like Riemannian manifolds [McC01].

Formulation (16) comes with an intuitive physical interpretation. The time-
varying function ρ(x, t) gives the density of a gas as a function of time t ∈ [0, 1],
which starts out in configuration ρ0 and ends in configuration ρ1. The constraint
∂ρ
∂t = −∇ · (ρv) is the continuity equation, which states that the vector field v(x, t)
is the velocity of ρ as it moves as a function of time while preserving mass. Over
all possible ways to “animate” the motion from ρ0 to ρ1, the objective function
minimizes 1

2ρ‖v‖
2
2 (mass times velocity squared): the total kinetic energy!

From a computational perspective, it can be convenient to replace velocity v
with momentum J := ρ · v to obtain an equivalent formulation to (16):

(17) W2
2 (ρ0, ρ1)=


minJ(x,t),ρ(x,t)

1
2

∫ 1

0

∫
Rn
‖J(x,t)‖22
ρ(x,t) dA(x) dt

s.t. ρ(x, 0) ≡ ρ0(x) ∀x ∈ Rn
ρ(x, 1) ≡ ρ1(x) ∀x ∈ Rn
∂ρ(x,t)
∂t = −∇ · J(x, t)
∀x ∈ Rn, t ∈ (0, 1)

This formulation is jointly convex in the unknowns (ρ, J).
Dynamical formulations of transport make explicit the phenomenon of dis-

placement interpolation [McC94, McC97], illustrated in Figure 6. Intuitively,
the Wasserstein distance W2 between two distribution functions ρ0 and ρ1 is “ex-
plained” by a time-varying sequence of distributions ρt interpolating from one to
the other. Unlike the trivial interpolation ρ(t) := (1 − t)ρ0(x) + tρ1(x), optimal
transport slides the distribution across the geometric domain similar to a geodesic
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shortest path between points on a curved manifold. Indeed, the intuitive connec-
tion to differential geometry is more than superficial: [Ott01, Lot08] show how
to interpret (16) as a geodesic in an infinite-dimensional manifold of probability
distributions over a fixed domain.

Other p-Wasserstein distances Wp also admit Eulerian formulations. Most
importantly, the 1-Wasserstein distance can be computed as follows:

(18) W1(ρ0, ρ1) =

{
minJ(x)

∫
Rn ‖J(x)‖2 dA(x)

s.t. ∇ · J(x) = ρ1(x)− ρ0(x).

This problem, known as the Beckmann problem, has connections to traffic modeling
and other tasks in geometry. From a computational perspective, it has the useful
property that the vector field J(x) has no time dependence, reducing the number
of unknown variables in the optimization problem.

3. Motivating Applications

Having developed the basic definition and theoretical properties of the optimal
transport problem, we can now divert from theoretical discussion to mention some
concrete applications of transport in the computational world. These are just a
few, chosen for their diversity (and no doubt biased toward areas adjacent to the
author’s research); in reality optimal transport is beginning to appear in a huge
variety of computational pipelines. Our goal in this section is not to give the details
of each problem and its resolution with transport, but just to give a flavor of how
optimal transport can be applied as a powerful modeling tool in application-oriented
disciplines as well as citations to more detailed treatments of each application.

Operations and logistics. Given its history and even its name, it comes as no
surprise that a primary application of optimal transport is in the operations and
logistics world, in which engineers are asked to find a minimum-cost routing of
packages or materials to customers. The basic theory and algorithms for this case
of optimal transport date back to World War II, in which optimal transport of
soldiers, weapons, supplies, and the like were by no means theoretical problems.

A particular case of interest in this community is that of transport over a graph
G = (V,E). Here, shortest-path distances over the edges of G provide the costs
for transport, leading to a problem known to computer scientists as minimum-
cost flow without edge capacities [RMO93]. This linear program is a classic al-
gorithmic problem, with well-known algorithms including cycle canceling [Kle67],
network simplex [Orl97], and the Ford–Fulkerson method [FJF56]. A challenge
for theoretical computer scientists is to design algorithms achieving lower-bound
time complexity for solving this problem; recent progress includes [She17], which
achieves a near-linear runtime using an approach that almost resembles a numerical
algorithm rather than a discrete method.

Histogram-based descriptors. Some of the earliest applications of optimal trans-
port in the computational world come from computer vision [RTG00]. Suppose
we wish to perform similarity search on a database of photographs: Given one
photograph, we wish to search the database for other photos that look similar.
One reasonable way to do this is to describe each photograph as a histogram—or
probability distribution—over the space of colors. Two photographs roughly look
similar if they have similar color histograms as measured using optimal transport
distances (known in this community as the “Earth Mover’s Distance”), giving a
simple technique for sorting and searching the dataset.
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Figure 7. Level sets of geodesic distance to the front right toe
of a 3D camel model approximated using the optimal transport
technique [SRGB14a].

This basic approach comes up time and time again in the applied world. For
images, rather than binning colors into a histogram one could bin the orientations
and strengths of the gradients to capture the distribution of edge features [PW09].
Recent work has proposed an embedding of the words in an English dictionary
into Euclidean space Rn [MCCD13], in which case the words present in a given
document become a point cloud or superposition of δ-functions in Rn; application
of the Wasserstein (“Word-Movers”) distance in this case is an effective technique
for document retrieval [KSKW15].

Registration. Suppose we wish to use a medical imaging device such as the MRI
to track the progress of a neurodegenerative disease. On a regular basis, we might
ask the subject to return to the laboratory for a brain scan, each time measuring
a signal over the volume of the MRI indicating the presence or absence of brain
tissue. These signals can vary drastically from visit to visit, not just due to the
progress of the disease but also due to more mundane issues like movement of the
patient in the measurement device or nonrigid deformation of the brain itself.

Inspired by issues like those mentioned above, the task of computing a map
from one scan to another is known as registration, and optimal transport has been
proposed time and time again as a tool for this task. The basic idea of these tools
is to use the transport map π as a natural way to transfer information from one
scan to another [HZTA04]. One caveat is worth highlighting: Optimal transport
does not penalize splitting mass or making non-elastic deformations in the optimal
map, so long as points of mass individually do not move too far. A few recent
methods attempt to cope with this final issue, e.g. by combining transport with
an elastic deformation method more common in medical imaging [FCVP17] or by
defining modified versions of optimal transport that are invariant to certain species
of deformation [CG99, Mém11, SPKS16].

Distance approximation. A predictable property of the p-Wasserstein distance
Wp for distributions over a surface or manifold M is that the distance between
δ-functions centered at two points x0, x1 ∈ M reproduces the geodesic (shortest-
path) distance from x0 to x1. While distances in Euclidean space are computable
using a closed-form formula, distances along discretized surfaces can be challeng-
ing to compute algorithmically, requiring techniques like fast marching [Set99],
the theoretically-justified but difficult-to-implement MMP algorithm [MMP87],
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Figure 8. A blue noise pattern generated using [DGBOD12]
(image courtesy F. de Goes, generated from photograph by F. Du-
rand).

or diffusion-based approximation [CWW13]. In this regime, fast algorithms for
approximating optimal transport distances Wp restricted to δ-functions actually
provide a way to approximate geodesic distances while preserving the triangle in-
equality [SRGB14a]; the level sets of one such approximation are shown in Fig-
ure 7.

Blue noise and stippling. Certain laser printers and other devices can only print
pages in black-and-white—no gray. The idea of halftoning is that gray values
between black and white can be approximated in a perceptually reasonable fashion
by patterns of black dots of varying radius or location over a white background;
the halftoned image can be printed using the black-and-white printer and from a
distance appears similar to the original.

A reasonable model for halftoning involves optimal transport. In particular,
suppose we think of a grayscale image as a distribution of ink on a white page; that
is, the image can be understood as a measure µ ∈ Prob([0, 1]2), where [0, 1]2 is the
unit rectangle representing the image plane. Under the reasonable assumption that
ink is conserved, we might attempt to approximate µ with a set of dots of black
inks, modeled using δ-functions centered at xi. The intensity of the dot cannot
be modulated (the printer only knows how to print in black-and-white), but the
location can be moved, leading to an optimization problem to the effect:

min
x1,...,xn

W2
2

(
µ,

1

n

∑
i

δxi

)
.

Here, the variables are the locations of the n dots approximating the image, and
the Wasserstein 2-distance is used to measure how well the dots approximate µ.
This basic idea is extended in [DGBOD12] to a pipeline for computing blue noise;
an example of their output is shown in Figure 8.

Political redistricting. A few recent attempts to propose political redistrict-
ing procedures have incorporated ideas from optimal transport to varying degrees
of success. For example, optimal transport might provide one simplistic means
of assigning voters to polling centers. The distribution of voters over a map is
“transported” to a sparse set of polling places, where distributional constraints
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reflect the fact that each polling center can only handle so many voters; assign-
ing each voter to his/her closest polling center might cause polling centers in
city centers to become overloaded. A few papers have proposed variations on
this idea to design compact voting districts e.g. for the US House of Represen-
tatives [SBD07, Mil07, CAKY17, Opt19]. Many confounding—but incredibly
important—factors obscure the application of this simplistic mathematical model
in practice, ranging from compliance with civil rights law to the simple decision of a
transport cost (e.g. geographical versus road network versus public transportation
versus travel time).

Statistical estimation. Parameter estimation is a key task in statistics that in-
volves “explaining” a given dataset using a statistical model. For example, given
the set of heights of people in a room {h1, . . . , hn}, a simple parameter estimation
task might be to estimate the mean h0 and standard deviation σ of a normal (bell
curve/Gaussian) distribution g(h|h0, σ) from which the data was likely sampled.

Principal among the techniques for parameter estimation is the maximum like-
lihood estimator (MLE). Continuing in our height data example, assuming the n
heights are drawn independently, the joint probability of observing the given set of
heights in the room is given by the product

P (h1, . . . , hn|h0, σ) =

n∏
i=1

g(hi|h0, σ).

The MLE of the data is the estimate of (h0, σ) that maximizes this probability
value:

(h0, σ)MLE := arg max
h0,σ

P (h1, . . . , hn|h0, σ).

For algebraic reasons it is often easier to maximize the log likelihood logP (· · · ),
although this is obviously equivalent to the formulation above.

As an alternative to the MLE, however, the minimum Kantorovich estimator
(MKE) [BBR06] uses machinery from optimal transport. As the name suggests,
the MKE estimates the parameters of a distribution by minimizing the transport
distance between the parameterized distribution and the empirical distribution from
data. For our height problem, the optimization might look like

(h0, σ)MKE := arg min
h0,σ
W2

2

(
1

n

∑
i

δhi , g(·|h0, σ)

)
The differences between MLE, MKE, and other alternatives can be subtle from
the outside looking in, and the MKE is only recently being studied in applied
environments in comparison to more conventional alternatives. Since it takes into
account the distance measure of the geometric space on which the samples are
defined, the MKE appears to be robust to geometric noise that can confound more
traditional alternatives—at the price of increased computational expense. Recent
applications have shown value of this estimator for training and inference in machine
learning models [MMC16, BJGR17].

Domain adaptation. Many basic statistical and machine learning algorithms
make a false assumption that the “training” and “test” data are distributed equally.
As an example where this is not the case, suppose we wish to make an object
recognition tool that learns how to label the contents of a photograph. As training
data, we use the listings on an e-commerce site like Amazon.com, which contain
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Figure 9. Optimal transport is used to design the shape of trans-
parent or reflective material to show a particular caustic pattern
(image courtesy of EPFL Computer Graphics and Geometry Lab-
oratory and Rayform SA).

not only a photograph of a given object but also text describing it. But, while
this training data is extremely clean, it is not representative of possible test data,
e.g. gathered by a robot navigating a shopping mall: Photographs collected by the
latter likely contain clutter, a variety of lighting configurations, and countless other
confounding factors. Algorithms designed to compensate for the difference between
training and test data are known as domain adaptation techniques.

One possibility is to use optimal transport to design a stable domain adaptation
tool. The basic idea is to view the training data as a point cloud in some Euclidean
space Rd. For instance, perhaps d could be the number of pixels in a photograph;
the location of every point in the point cloud determines the contents of the photo,
and as additional information each point is labeled with a text name. The test
data is also a point cloud in Rd, but thanks to the confounding factors listed
above perhaps these two points clouds are not aligned. [CFTR17] proposes using
optimal transport to align the training data to the test data and to carry the label
information along, e.g. attempting to align the space of Amazon.com photos to
the space of shopping mall photos. Once the training and test data are aligned, it
makes sense to transfer information, classifiers, and the like from one to the other.

Engineering design. Optimal transport has found application in design tools
for many engineering tasks, from reflector design [Oli87, Wan96] to aerodynam-
ics [Pla12]. One intriguing paper uses optimal transport to design transparent
objects made of materials like glass, which can focus light into caustics via refrac-
tion [STTP14]. By minimizing the transport distance between the light rays by
the glass and a desired black-and-white image, they can “shape” the distribution
of light as it comes out of a window. An example caustic design computed using
their method is shown in Figure 9.

4. One Problem, Many Discretizations

Computational optimal transport is a relatively new discipline, and techniques
for solving the optimal transport problem and in particular computing Wasserstein
distances are still a topic of active research. So far, it appears that no “one size
fits all” approach has been discovered; rather, different applications and scenarios
demand different numerical techniques for optimal transport.

Several desiderata inform the design of an algorithm for optimal transport:
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• Efficiency: While L1 distances and KL divergences are computable
using closed-form formulas, optimal transport distance computation re-
quires solving an optimization problem. The cost of solving this problem
relative to the cost of direct computation of transport’s simpler alterna-
tives is largely the reason why optimal transport has not reached a higher
level of popularity in the applied world. But this scenario is changing:
New high-speed algorithms for large-scale transport are nearly compet-
itive with more traditional alternatives while bringing to the table the
geometric structure unique to transport world.

• Stability: A theme in the numerical analysis literature is stability, the
resilience of a computation to small changes in the input. Stability of
the minimal transport objective value and/or its accompanying transport
map can be a challenging topic. Linear program discretizations of con-
tinuum optimal transport problems tend to resemble (9) above, a linear
program whose optimal solution T provably has the sparsity of a permu-
tation matrix; this implies that a small perturbation of v or w may result
in a discrete change of T ’s sparsity structure.

• Structure preservation: Transport is well-studied theoretically, and
one could reasonably expect that key properties of transport in the infinite-
dimensional case are preserved either exactly or approximately when they
are computed numerically. For instance, Wasserstein distances enjoy a
triangle inequality, and Eulerian formulations of transport have connec-
tions to gradient flows and other PDE. Provable guarantees that these
structures are preserved in discretizations of transport help assure that
nothing critical is lost in the process of approximating transport distances
algorithmically.

One reason why there are so many varied algorithms available for numerical OT
is that the problem can be written in many different ways (see §2.4). A basic recipe
for designing a transport algorithm is to choose any of the equivalent formulations
of transport—all of which yield the same optimal value in theory—, discretize any
variables that are otherwise infinite-dimensional, and design a bespoke optimization
algorithm to solve the resulting problem, which now has a finite number of vari-
ables. The flexibility of choosing which version of transport to discretize usually
is tuned to the geometry of a given application, desired properties of the result-
ing discretization, and ease of optimizing the discretized problem. The reality of
choosing a discretization to facilitate ease of computation reflects a tried-and-true
maxim of engineering: “If a problem is difficult to solve, change the problem.”

In this section, we roughly outline a few discretizations and accompanying opti-
mization algorithms for numerical OT. Our goal is not to review all well-known tech-
niques for computational transport thoroughly but rather to highlight the breadth
of possible approaches and to give a few practical pointers for implementing state-
of-the-art transport algorithms at home.

4.1. Regularized Transport. We will start by describing entropically-regularized
transport, a technique that has piqued the interest of the machine learning commu-
nity after its introduction there in 2013 [Cut13]. This technique has an explicit
trade-off between accuracy and computational efficiency and has shown particularly
strong promise in the regime where a rough estimate of transport is sufficient. This
regime aligns well with the demands of “big data” applications, in which individual
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data points are likely to be noisy—so obtaining an extremely accurate transport
value would be overkill computationally.

Regularization is a key technique in optimization and inverse problems in which
an objective function is modified to encode additional assumptions and/or to make
it easier to minimize. For example, suppose we wish to solve the least-squares
problem minx ‖Ax − b‖22 given a matrix A ∈ Rm×n and a vector b ∈ Rm. When
A is rank-deficient or if m < n, an entire affine space of x’s achieve the minimal
value. To get around this, we could apply Tikhonov regularization (also known as
ridge regression), in which we instead minimize ‖Ax− b‖22 +α‖x‖22 for some α > 0.
As α → 0, a solution of the original least-squares problem is recovered, while for
any α > 0 the regularized problem is guaranteed to have a unique minimizer; as
α → ∞, we have x → 0, a predictable but uninteresting value. From a high level,
we can think of α as trading off between fidelity to the original problem Ax ≈ b
and ease of solution: For small α > 0 the problem is near-singular but close to the
original least-squares formulation, while larger α makes the problem easier to solve.

The variables in the basic formulation of transport are nonnegative probabil-
ity values, to which it is difficult to apply standard least-squares style Tikhonov
regularization; see [ES18, BSR18] for discussion of this case. Instead, entropic
regularization uses a regularizer from information theory: the entropy of a proba-
bility distribution. Suppose a probability measure has distribution function ρ(x).
The (differential) entropy of ρ is defined as

(19) H[ρ] := −
∫
ρ(x) log ρ(x) dx.

This definition makes two assumptions that are needed to work with entropy, that
a probability measure admits a distribution and that it is nonzero everywhere—
otherwise log ρ(x) is undefined. H[ρ] is a concave function of ρ that roughly mea-
sures the “fuzziness” of a distribution. Low entropy indicates that a distribution
is sharply peaked about a few points, while high entropy indicates that it is more
uniformly distributed throughout space.

The basic approach in entropically-regularized transport is to add a small mul-
tiple of −H[π] to regularize the transport plan π in the OT problem. We will start
by discussing the discrete problem (9), which after entropic regularization can be
written as follows:

(20) OTα(v, w;C) :=


minT∈Rk1×k2

∑
ij Tijcij + α

∑
ij Tij log Tij

s.t.
∑
j Tij = vi ∀i ∈ {1, . . . , k1}∑
i Tij = wj ∀j ∈ {1, . . . , k2}.

We are able to drop the T ≥ 0 constraint because log Tij in the objective function
prevents negative T values.

The objective function from (20) can be refactored slightly:∑
ij

Tijcij + α
∑
ij

Tij log Tij = α
∑
ij

Tij

(cij
α

+ log Tij

)
= α

∑
ij

Tij log
Tij

e−cij/α

= αKL(T |Kα).(21)
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Rk1×k2

∑
j Tij = vi ∑

i Tij = wj

Kα

T ∗

Rk1×k2

∑
j Tij = vi ∑

i Tij = wj

Kα

(a) Projection (b) Alternating projection

Figure 10. (a) Intuition for the optimization problem (20) as a
projection of Kα onto the prescribed row sum and column sum
constraints with respect to KL divergence (21). (b) The Sinkhorn
algorithm projects back and forth onto one set of constraints and
then the other, converging to the transport matrix T ∗.

Here, we define a kernel Kα via (Kα)ij := e−cij/α. KL denotes the Kullback–Leibler
divergence [KL51], a distance-like (but asymmetric) measure of the similarity be-
tween T and K from information theory; the definition of Kα is singular when
α = 0, indicating that the connection to KL is only possible in the α > 0 regime.

(21) gives an intuitive explanation for entropy-regularized transport illustrated
in Figure 10(a). The matrix K does not satisfy the constraints of the regularized
transport problem (20). Thinking of KL roughly as a distance measure, our job
is to find the closest projection (with respect to KL) of K onto the set of T ’s
satisfying the constraints

∑
j Tij = vi and

∑
i Tij = wj . With this picture in mind,

Figure 10(b) illustrates the Sinkhorn algorithm for entropy-regularized transport
derived below, which alternates between projecting onto one of these sets and then
the other.

Continuing in our derivation, we return to (20) to derive first-order optimal-
ity conditions. Since (20) is an equality-constrained differentiable minimization
problem, it can be solved using a standard multi-variable calculus technique: the
method of Lagrange multipliers. There are k1 + k2 constraints, so we need k1 + k2

Lagrange multipliers, which—following the derivation of (11)—we store in vectors
φ ∈ Rk1 and ψ ∈ Rk2 . The Lagrange multiplier function here is:

Λ(T ;φ, ψ) :=
∑
ij

Tijcij + α
∑
ij

Tij log Tij

+
∑
i

φi

vi −∑
j

Tij

+
∑
j

ψj

(
wj −

∑
i

Tij

)
= 〈T,C〉+ α〈T, log T 〉+ φ>(v − T1) + ψ>(w − T>1)

Here, 〈·, ·〉 indicates the element-wise inner product of matrices, the log is element-
wise, and 1 indicates the vector of all ones. Taking the gradient with respect to T
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gives the following first-order optimality condition:1

0 = ∇TΛ = C + α11> + α log T − φ1> − 1ψ>

=⇒ log T =
(φ− α1)1>

α
+

1ψ>

α
+ logKα where Kα := exp[−C/α]

=⇒ T = diag[p]Kαdiag[q] where p := exp

[
φ− α1
α

]
and q := exp

[
ψ

α

]
.

Here, diag[v] indicates the diagonal matrix whose diagonal is v. The key result
is the boxed equation, which gives a formula for the unknown transport matrix T
in terms of two unknown vectors p and q derived by changing variables from the
Lagrange multipliers φ and ψ. There are multiple choices of p and q in terms of φ
and ψ that all give the same “diagonal rescaling” formula including some that are
more symmetric, but this detail is not important.

Next we plug the new relationship T = diag[p]Kαdiag[q] into the constraints
of (20) to find

(22)
p� (Kαq) = v
q � (K>α p) = w.

Here, � denotes the elementwise (Hadamard) product of two vectors or matrices.
These formulas determine the unknown vector p in terms of q and vice versa.

The formulas (22) directly suggest a state-of-the-art technique for entropy-
regularized optimal transport, known as the Sinkhorn (or Sinkhorn–Knopp) algo-
rithm and dating back to an early technique for matrix rescaling [SK67]. This
extremely succinct algorithm successively updates estimates of p and q. Iteration
k is given by the update formulas (� denotes elementwise division)

pk+1 ← v � (Kαq
k)

qk+1 ← w � (K>α p
k+1).

It can be implemented in fewer than ten lines of code! The basic approach is to
update p in terms of q using the first relationship, then q in terms of p using the sec-
ond relationship, then p again, and so on. Using essentially the geometric intuition
provided in Figure 10(b) for this technique and explored in-depth in [BCC+15],
one can prove that diag[p]Kαdiag[q] converges asymptotically to the optimal T at
a relatively efficient rate regardless of the initial guess.

Several advantages distinguish the Sinkhorn method from its peers. Most crit-
ically, beyond its ease of implementation, this algorithm is built from simple lin-
ear algebra operations—matrix-vector multiplies and elementwise arithmetic—that
parallelize well and can be carried out extremely quickly on modern processing hard-
ware. One modern spin on Sinkhorn shows how to shave off even more calculations
while preserving its favorable convergence rate [AWR17].

Beyond inspiring a huge body of follow-on work in machine learning and com-
puter vision, the Sinkhorn rescaling algorithm provides a means to adapt optimal
transport to discrete domains suggested in [SDGP+15]. So far, our description
of the Sinkhorn method has been generic to any cost matrix C. Adding geomet-
ric structure to the problem gives it a strong interpretation using heat flow and
suggests a faster way to carry out Sinkhorn iterations on discrete domains.

1Readers uncomfortable with this sort of calculation are strongly encouraged to take a look
at the useful “cheat sheet” document [PP08].
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Suppose that the transport cost C is given by squared pairwise distances along
a discretized piece of geometry such as a triangulated surface, denoted Σ; this
corresponds to computing a regularized version of the 2-Wasserstein distance (10).
The dual variables p and q can be thought of as functions over Σ, discretized e.g.
using one value per vertex. Then, the kernel Kα has elements

(Kα)ij = e−d(xi,xj)
2/α,

where d(xi, xj) denotes the shortest-path (geodesic) distance along the domain from
vertex i to vertex j.

To start, if our domain is flat, or Euclidean, then (Kα)ij = e−‖xi−xj‖
2
2/α for

points {xi}i ⊆ Rn. Considered as a function of the xi’s, we recognize Kα up to scale
as a Gaussian (or normal distribution, or bell curve) in distance. Multiplication
by Kα is then Gaussian convolution, an extremely simple operation that can be
carried out algorithmically using methods like the Fast Fourier Transform (FFT).
In other words, rather than explicitly computing and storing the matrix Kα as
an initial step and computing matrix-vector products Kαp and Kαq (note Kα is
symmetric in this case) in every iteration of the Sinkhorn algorithm, in this case
we can replace these products with convolutions gσ ∗ p and gσ ∗ q, where ∗ denotes
convolution and gσ is a Gaussian whose standard deviation is determined by the
regularizer α. This is completely equivalent to the Sinkhorn method that explicitly
computes the matrix-vector product, while eliminating the need to store Kα and
improving algorithmic speed thanks to fast Gaussian convolution. Put more simply,
in the Euclidean case multiplication by Kα is more efficient than storing Kα

since we can carry out the former implicitly.
When Σ is curved, we can use a mathematical sleight of hand modifying the

entropic regularizer to improve computational properties while maintaining conver-
gence to the true optimal transport value as the regularizer goes to zero. We employ
a well-known property of geodesic distances introduced in theory in [Var67] and
applied to computing distances on discrete domains in [CWW13]. This property,
known as Varadhan’s formula, states that geodesic distance d(x, y) between two
points x, y on a manifold can be recovered from heat diffusion over a short time:

d(x, y)2 = lim
t→0

[−2t lnHt(x, y)].

Recall that the heat kernel Ht(x, y) determines diffusion between x, y ∈ Σ after
time t. That is, if ft satisfies the heat equation ∂tft = ∆ft, where ∆ denotes the
Laplacian operator, then

ft(x) =

∫
Σ

f0(y)Ht(x, y) dy.

Connecting to the previous paragraph, the heat kernel in Euclidean space is
exactly the Gaussian function! Hence, if we replace the kernel Kα with the heat
kernel Hα/2 in Sinkhorn’s method, in the Euclidean case nothing has changed. In
the curved case, we get a new approximation of Wasserstein distances introduced
as “convolutional Wasserstein distances.”

All that remains is to convince ourselves that we can compute matrix-vector
products Ht · p when Ht is the heat kernel of a discretized domain Σ that is not
Euclidean. Thankfully, armed with material from other chapters in this tutorial,
this is quite straightforward in the context of discrete differential geometry. In
particular, the well-known cotangent approximation of the Laplacian ∆ can be
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t = 0 t = 1

Figure 11. Output from an Eulerian algorithm for optimal trans-
port extending [BB00] (image courtesy H. Lavenant); interpola-
tion between the two distributions on the top is shown below the
timeline. In addition to finding the transport cost, methods in this
class also provide a sequence of distributions interpolating between
the two inputs.

combined with standard ordinary differential equation (ODE) solution techniques
to carry out heat diffusion in this case using sparse linear algebra. We refer the
reader for [SDGP+15] for details of one implementation that uses DDG tools
extensively.

4.2. Eulerian Algorithms. Entropically-regularized transport works with
the Kantorovich formulation in (7). This may be one of the earliest and most
intuitive definitions of optimal transport, but this in itself is not a strong argument
in favor of tackling this formulation numerically. As a point of contrast, we now
explore a completely different approximation of Wasserstein distances that can be
useful in low-dimensional settings, built from the Eulerian (fluid mechanics) formu-
lation of the 2-Wasserstein distanceW2

2 in (16). Historically, this method pre-dates
the popularity of entropically-regularized transport and has distinct advanges and
disadvantages: It explicitly computes a time-varying displacement interpolation of
a density “explaining” the transport (see Figure 11) but in the process must solve
a difficult boundary-value PDE problem. Beyond the original paper [BB00], we
recommend the excellent tutorial [Pey10] that steps through an implementation
of this technique in practice.

We make a few more simplifications to the continuum formulation before dis-
cretizing it. We start by making a quick observation: for any vector J ∈ Rn and
ρ > 0 we have

‖J‖22
2ρ

=

{
supa∈R,b∈Rn aρ+ b>J

s.t. a+
‖b‖22

2 ≤ 0.

This convex program not only justifies that the quotient ‖J‖
2
2/2ρ is convex jointly

in J and ρ, but also it shows we can write the optimization problem (17) with
additional variables as

infJ,ρ supa,b
∫ 1

0

∫
Rn [a(x, t)ρ(x, t) + b(x, t)>J(x, t)] dA(x) dt

s.t. ρ(x, 0) ≡ ρ0(x) ∀x ∈ Rn
ρ(x, 1) ≡ ρ1(x) ∀x ∈ Rn
∂ρ(x,t)
∂t = −∇ · J(x, t) ∀x ∈ Rn, t ∈ (0, 1)

a(x, t) +
‖b(x,t)‖22

2 ≤ 0 ∀x ∈ Rn, t ∈ (0, 1).
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Next, we introduce a dual potential function φ(x, t) similarly to the derivation
of (12) to take care of all but the last constraint:

(23)

infJ,ρ supa,b,φ
∫ 1

0

∫
Rn

[
a(x, t)ρ(x, t) + b(x, t)>J(x, t)

+φ(x, t)
(
∂ρ(x,t)
∂t +∇ · J(x, t)

) ]
dA(x) dt

+
∫
Rn [φ(x,1)(ρ1(x)−ρ(x,1))−φ(x, 0)(ρ0(x)−ρ(x,0))] dA(x)

s.t. a(x, t) +
‖b(x,t)‖22

2 ≤ 0 ∀x ∈ Rn, t ∈ (0, 1).

We can simplify some terms in this expression. First, using integration by parts we
have∫ 1

0

φ(x, t)
∂ρ(x, t)

∂t
dt = [ρ(x, 1)φ(x, 1)− ρ(x, 0)φ(x, 0)]−

∫ 1

0

ρ(x, t)
∂φ(x, t)

∂t
dt

We also can integrate by parts in x to show∫
Rn
φ(x, t)∇ · J(x, t) dA(x) = −

∫
Rn
J(x, t)>∇φ(x, t) dA(x).

This simplification works equally well if we replace Rn with the box [0, 1]n with pe-
riodic boundary conditions. Incorporating these two integration by parts formulae
into our objective function yields a new one:∫

Rn

{∫ 1

0

(
ρ(x, t)

[
a(x, t)− ∂φ(x, t)

∂t

]
+ J(x, t)>[b(x, t)−∇φ(x, t)]

)
dt

− φ(x, 0)ρ0(x) + φ(x, 1)ρ1(x))

}
dA(x)

We now make some notational simplifications. Define z := {ρ, J} and q := {a, b}
with inner product

〈z, q〉 :=

∫
Rn

∫ 1

0

(a(x, t)ρ(x, t) + b(x, t)>J(x, t)) dt dA(x).

Furthermore, define

F (q) :=

{
0 if a(x, t) +

‖b(x,t)‖22
2 ≤ 0 ∀x ∈ Rn, t ∈ (0, 1)

∞ otherwise.

G(φ) :=

∫
Rn

(φ(x, 0)ρ0(x)− φ(x, 1)ρ1(x)) dA(x)

These functions are both convex. These functions, plus our simplifications and a
sign change, allow us to write (23) in a compact fashion as:

(24) − sup
z

inf
q,φ

[F (q) +G(φ) + 〈z,∇x,tφ− q〉] ,

where ∇x,tφ := {∂φ/∂t,∇xφ}.
Blithely assuming strong duality, namely that we can swap the supremum and

the infimum, we arrive at an alternative interpretation of (24). In particular, we
can view z as a Lagrange multiplier corresponding to a constraint q = ∇x,tφ. From
this perspective, we actually can find a saddle point (max in z, minimum in (q, φ))
of the augmented Lagrangian Lr for any r ≥ 0:

Lr(φ, q, z) := F (q) +G(φ) + 〈z,∇x,tφ− q〉+
r

2
〈∇x,tφ− q,∇x,tφ− q〉.



26 JUSTIN SOLOMON

The extra term here effectively adds zero to the objective function, assuming the
constraint is satisfied.

The algorithm proposed in [BB00] iteratively updates estimates (φ`, q`, z`) by
cycling through the following three steps:

φ`+1 ← arg min
φ
Lr(φ, q

`, z`)

q`+1 ← arg min
q
Lr(φ

`+1, q, z`)

z`+1 ← z` + r(q`+1 −∇x,tφ`+1).

The first two steps update some variables while holding the rest fixed to the
best possible value. The third step is gradient step for z. This cycling algo-
rithm and equivalent formulations has many names in the literature—including
ADMM [BPC+11], the Douglas–Rachford algorithm [DR56, LM79], and the
Uzawa algorithm [Uza68]—and is known to converge under weak assumptions.

The advantage of this algorithm is that the individual update formulae are
straightforward. In particular, the φ update is equivalent to solving a Laplace
equation

∆x,tφ
`+1 = ∇x,t · (z` − rq`),

where ∆x,t is the Laplacian operator in time and space. The q update decouples over
x and t, amounting to projecting∇x,tφ`+1+z`/r onto the constraints in the definition
of F (q) with respect to L2, a one-dimensional problem solvable analytically. And,
the z update is already in closed-form.

So far, we have described the Benamou–Brenier algorithm using continuum
variables, but of course at the end of the day we must discretize the problem for
computational purposes. The most straightforward discretization assumes ρ0 and
ρ1 are supported in the unit square [0, 1]n, which is broken up into a m×m×· · ·×m
grid, and further discretizes the time variable t ∈ [0, 1] into p steps. Then, all degrees
of freedom (φ, q, z) can be put on the grid vertices and interpolated in between using
multilinear basis functions; this leads to a finite element (FEM) discretization of
the problem that can be approached using techniques discussed in earlier chapters.
An alternative grid-based discretization and accompanying optimization algorithm
is also given in [PPO14].

The use of PDE language makes this dynamical formulation of transport po-
tentially compatible with machinery like discrete exterior calculus (DEC) [Hir03],
which could be used to define a discrete notion of transport on simplicial complexes
like triangle meshes. [LCCS18] provides one such notion of “discrete dynamical
transport,” discretizing the spatial variables onto a mesh but leaving the continuum
interval of time t alone. In their language, distributions on a mesh are interpreted
as a finite-dimensional manifold parameterized by one density value per vertex and
equipped with a careful choice of Riemannian metric; transport distances become
geodesic distances along this manifold. Generally speaking, discretizing the ob-
jective function ‖J‖

2
2/ρ on a triangle mesh is challenging because scalar quantities

like ρ typically are discretized on vertices or faces while vectorial quantities like J
are better suited for edges. Evaluating ‖J‖

2
/2ρ then requires averaging J or ρ so

that the two end up on the same simplices. Some recent papers with analogous
constructions on graphs [Maa11, SRGB16, ERSS17] consider related challenges
on one-dimensional structures.
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Figure 12. Power diagram from a semidiscrete transport problem
(image courtesy R. Barnes). Here, semidiscrete transport is used to
partition the state of New Jersey into cells with equal population;
population density is shaded in red.

While the Benamou–Brenier dynamical formulation of transport is the best
known, it is worth noting that the Beckmann problem (18) for the 1-Wasserstein
distance W1 more readily admits discretization using the finite element method
(FEM) while preserving a triangle inequality. Details of such a formulation as
well as an efficient optimization algorithm are provided in [SRGB14a]. The rea-
son (18) is easier to discretize is that the time-varying aspect of transport is lost
in this formulation: All that is needed is a single vector J(x) per point x. What
makes this problem easy to discretize and optimize is its downfall application-wise:
Interpolation with respect to W1 between two densities µ0 and µ1 is given by the
uninteresting solution µt = (1− t)µ0 + tµ1, which does not displace mass but rather
“teleports” it from the source to the target.

Another PDE-based approach to optimal transport is worth noting and has
strong connections to the theory of transport without connecting to fluid flow.
Recall the Monge formulation of optimal transport on Rn in (3), which seeks a
map φ(x) that pushes forward one distribution function ρ0(x) onto another ρ1(x).
A famous result by Brenier [Bre91] shows that φ can be written as the gradient of
a convex potential Ψ(x): φ(x) = ∇Ψ(x). Using H to denote the Hessian operator,
this potential satisfies the Monge-Ampère PDE

(25) det(HΨ(x))ρ1(∇Ψ(x)) = ρ0(x),

a second-order nonlinear elliptic equation that is extremely challenging to solve in
practice. A few algorithms, e.g. [OP89, LR05, BFO10, FO11, BFO14], tackle
this nonlinear system head-on, discretizing the variables involved and solving for
Ψ.

4.3. Semidiscrete Transport. Our final example from the computational
transport world uses yet another formulation of the transport problem. This time,
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our inspiration is the one-dimensional semidiscrete problem, whose solution is mo-
tivated from the formulation in (6). Our exposition of this problem closely follows
the excellent tutorial [LS18].

In this setting, optimal transport is computed from a distribution whose mass
is concentrated at a finite set of isolated points to a distribution with a known but
potentially smooth density function. Recall that in the one-dimensional case, we
learned that each point of mass in the source is mapped to an interval in the target.
That is, the domain of the target density is partitioned into contiguous cells whose
mass is assigned to a single source point. We will find that the higher-dimensional
analog is spiritually identical: Each point of mass in the source density is assigned
to a convex region of space in the target. This observation will suggest algorithms
constructed from ideas in discrete geometry extending Voronoi diagrams and similar
constructions.

As in (6), suppose we are computing the 2-Wasserstein distance from a discrete

measure µ :=
∑k
i=1 aiδxi , whose mass is concentrated at points xi ∈ Rn with

weights ai > 0, to an absolutely continuous measure ν with distribution function
ρ(x). The dual formulation of transport (12) in this case can be written

supφ,ψ
∑k
i=1 aiφ(xi) +

∫
Rn ψ(y)ρ(y) dA(y)

s.t. φ(x) + ψ(y) ≤ c(x, y) ∀x, y ∈ Rn.

The objective in this case “does not care” about values of φ(x) for x 6∈ {xi}ki=1.
Define φi := φ(xi). By this observation, we can write a problem with only one
continuum variable:

supφ,ψ
∑
i aiφi +

∫
Rn ψ(y)ρ(y) dA(y)

s.t. φi + ψ(y) ≤ c(xi, y) ∀y ∈ Rn, i ∈ {1, . . . , k}.

In a slight abuse of notation, for the rest of this section we will think of φ as a
vector φ ∈ Rk rather than a function φ(x). Given the supremum, we might as well
choose the largest ψ possible that satisfies the constraints. Hence,

ψ(y) = inf
i∈{1,...,k}

[c(xi, y)− φi].

This leads to a final optimization problem in a finite set of variables φ1, . . . , φk:

W2
2 (µ, ν) = sup

φ∈Rk

∑
i

aiφi +

∫
Rn
ρ(y)

(
inf

i∈{1,...,k}
[c(xi, y)− φi]

)
dA(y)

= sup
φ∈Rk

∑
i

[
aiφi +

∫
Lagcφ(xi)

ρ(y)[c(xi, y)− φi] dA(y)

]
(26)

Here, Lagcφ(xi) indicates the Laguerre cell corresponding to xi:

(27) Lagcφ(xi) := {y ∈ Rn : c(xi, y)− φi ≤ c(xj , y)− φj ∀j 6= i}.

The set of Laguerre cells yields the Laguerre diagram, a partition of Rn determined
by the cost function c and the vector φ; the φi’s effectively control the sizes of
the Laguerre cells in the diagram. When c(x, y) = ‖x − y‖2 is a distance function
and φ = 0, the Laguerre diagram equals the well-known Voronoi diagram of the
xi’s that partitions Rn into loci of points Si corresponding to those closer to xi
than to the other xj ’s [Aur91]. More importantly for the 2-Wasserstein distance,
when c(x, y) = 1/2‖x−y‖22, the Laguerre diagram is known as the power diagram, an
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object studied since the early days of computational geometry [Aur87]; an example
is shown in Figure 12.

Since (26) comes from a simplification of the dual of the transport problem,
it is concave in φ; a direct proof can be found in [AHA92]. This implies that a
simple gradient ascent procedure starting from any initial estimate of φ will reach
a global optimum. Define the objective function

F (φ) :=
∑
i

[
aiφi +

∫
Lagcφ(xi)

ρ(y)[c(xi, y)− φi] dA(y)

]
.

The gradient can be computed using the partial derivative expression

(28)
∂F

∂φi
= ai −

∫
Lagcφ(xi)

ρ(y) dA(y).

This expression is predictable from the definition of F (φ) but must be checked using
Reynolds’ transport theorem or an analogous result; a similar formula exists for the
second derivatives of F . Setting the gradient (28) to zero formalizes an intuition
for the optimization problem (26), that it resizes the Laguerre cells by modifying
the φi’s until the cell corresponding to each xi contains mass ai:

ai =

∫
Lagcφ(xi)

ρ(y) dA(y).

The main ingredient needed to compute the derivatives of F is an algorithm
for integrating ρ over Laguerre cells. Hence, gradient ascent and Newton’s method
applied to optimizing for φ cycle between updating the Laguerre diagram for the
current φ estimate, recomputing the gradient and/or Hessian, assembling these into
a search direction, and updating the current estimate of φ. For squared Euclidean
costs, these algorithms are facilitated by fast algorithms for computing power di-
agrams, e.g. [Bow81, Wat81]. While convergence of gradient descent with line
search follows directly from concavity, [KMT16] proves that under certain as-
sumptions a damped version of Newton’s algorithm—which employs the Hessian in
addition to the gradient to accelerate convergence—exhibits global convergence.

Example techniques following this template include [CGS10], which proposed
an early technique for 2D problems; [Mér11], for semi-discrete transport to piecewise-
linear distribution functions in 2D supported on triangle meshes improved using a
multiscale approximation; and [Lév15], which proposes semi-discrete transport to
distributions in 3D that are piecewise-linear on tetrahedral meshes. [DGBOD12]
provides an early example of a Newton solver for 2D semidiscrete transport using
power diagrams and additionally uses derivatives of transport in the support points
xi and weights ai for assorted approximation problems.

Beyond providing fast algorithms for transport in the semidiscrete case, this for-
mulation is also valuable for applications incorporating transport terms. [DGCSAD11]
employs semidiscrete transport to a collection of distributions concentrated on line
segments to reconstruct line drawings from point samples; [DCSA+14] proposes a
similar technique for reconstructing triangulated surfaces from point clouds in R3.
[GMMD14] defines a version of semi-discrete transport intrinsic to a triangulated
surface, which can be used for tasks like parameterizing the set of per-vertex area
weights in terms of the values φi.
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5. Beyond Transport

Beyond improving tools for solving the basic optimal transport problem, some
of the most exciting recent work in computational transport involves using trans-
port as a single term in a larger model. In a recent tutorial for the machine learning
community, we termed this new trend “Wassersteinization” [CS17]: using Wasser-
stein distances to improve geometric properties of variational models in statistics,
learning, applied geometry, and other disciplines. Further extending the scope of
applied transport, variations of the basic problem have been proposed to apply OT
to objects other than probability distributions.

While a complete survey of these creative new applications and extensions is
far beyond the scope of this tutorial, we highlight a few interesting pointers into
the literature:

• Unbalanced transport: One limitation of the basic model for optimal
transport is that it is a distance between histograms or probability distri-
butions, rather than a distance between functions or vectors in Rn—which
may not integrate to 1 or may contain negative values. This leads to the
problem of unbalanced transport, in which mass conservation and/or pos-
itivity must be relaxed. Models for this problem range from augmenting
the transport problem with a “trash can” that can add or remove mass
from distributions [PW09] to extensions of dynamical transport to this
case [CPSV16]. Making transport work for functions rather than distri-
butions while preserving the triangle inequality and other basic properties
is challenging both theoretically and from a numerical perspective.

• Barycenters: The idea of displacement interpolation we motivated us-
ing (17) suggests a generalization to more than two distributions, known
as the Wasserstein barycenter problem [AC11]. Given k distributions
µ1, . . . , µk, the Wasserstein barycenter µbarycenter is defined as the mini-
mizer of the following optimization problem

(29) µbarycenter := arg min
µ

k∑
i=1

W2
2 (µ, µi).

The Wasserstein barycenter gives some notion of averaging a set of proba-

bility distributions, motivated by the observation that the average 1
k

∑k
i=1 xi

of a set of vectors xi ∈ Rn is the minimizer arg minx
∑
i ‖x − xi‖22.

Barycenter algorithms range from extensions of the Sinkhorn algorithm
[BCC+15, SDGP+15] to methods that perform gradient descent on µ
by differentiating the distance W2 in its argument [CD14] and stochas-
tic techniques requiring only samples from the distributions µi [SCSJ17,
CCS18]. Other algorithms are inspired by a connection to multi-marginal
transport [Pas15], a generalization of optimal transport involving a dis-
tribution over the product of more than two measures. The optimization
problem (29) is also one of the earliest examples of “Wassersteinization,”
in the sense that it is an optimization problem for an unknown distribu-
tion µ including Wasserstein distance terms, contrasting somewhat from
the optimization problems we considered in §4 in which the unknown is
the transport distance itself.
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Further generalizing the barycenter problem leads to a notion of the
Dirichlet energy of a map from points in one space to distributions over an-
other [Bre03, Lav17], with applications in machine learning [SRGB14b]
and shape matching [SGB13, MCSK+17]. An intriguing recent pa-
per also proposes an inverse problem for barycentric coordinates seek-
ing weights for (29) that “explain” an input distribution as a transport
barycenter of others [BPC16].

• Quadratic assignment: The basic optimization problem for transport
has an objective function that is linear in the unknown transport matrix,
expressing a preference for transport maps that do not move any single
particle of probabilistic mass very far. This model, however, does not
necessarily extract smooth maps, wherein distance traveled by any single
particle is less important than making sure that nearby particles in the
source are mapped to nearby locations in the target. Such a smoothness
term leads to a quadratic term in the transport problem and allows it
to be extended to a distance between metric-measure spaces known as
the Gromov–Wasserstein distance [Mém11, Mém14], inspired by the
better-known but more rigid Gromov–Hausdorff distance. From an opti-
mization perspective, Gromov–Wasserstein computation leads to a “qua-
dratic assignment” problem, known in the most general case to be NP-
hard [SG76]; practical instances of the problem, however, can be tackled
using spectral [Mém09] or entropy-based [SPKS16] approximations and
have shown promise for applications in shape matching [SPKS16] and
word translation [AMJ18]. [PCS16] proposes a method for averaging
metric spaces using a barycenter formulation similar to (29).

• Capacity-constrained transport: Yet another extension of the trans-
port problem comes from introducing capacity constraints limiting the
amount of mass that can travel between assorted pairs of source and target
points; in the measure-theoretic formulation, this amounts to constraining
transport plan to be dominated by another input plan [KM15]. This con-
straint makes sense in many operations-type applications and has intrigu-
ing theoretical properties, but design of algorithms and discretizations
for capacity-constrained transport remains largely open although [BB00]
provides one approach again extending Sinkhorn’s algorithm.

• Gradient flows and PDE: Given a function f : M → R defined
over a geometric space M like a manifold, a gradient flow of f start-
ing at some x0 ∈ M attempts to minimize f via “gradient descent”
from x(0) := x0 expressed as an ordinary differential equation (ODE)
x′(t) = −∇f(x(t)). Since OT puts a geometry on the space of distribu-
tions Prob(Rn) over Rn, we can define an analogous procedure that flows
probability distributions to reduce certain functionals [JKO98, San17].
For instance, gradient flow on the entropy functional (19) in the Wasser-
stein metric leads to the heat diffusion equation ∂ρ/∂t = −∆ρ, where ∆
is the Laplacian operator; that is, performing gradient descent on en-
tropy in the Wasserstein metric is exactly the same as diffusing the ini-
tial probability distribution like an unevenly-heated metal plate. Beyond
giving a variational motivation for certain PDE, this mathematical idea
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inspired numerical methods for solving PDE that can be written as gradi-
ent flows [Pey15, BCL16]. Recent work has even incorporated transport
into numerical methods for PDE that cannot easily be written as gradient
flows in Wasserstein space, such as those governing incompressible fluid
flow [LHO10, Mir15, dGWH+15, MM16]. Gradient flow properties
can also be leveraged as structure to be preserved in discrete models of
transport; for instance, [Maa11] proposes a model for dynamical optimal
transport on a graph and checks that the gradient flow of entropy—now
an ODE rather than a PDE—agrees with a discrete heat equation.

• Matrix fields and vector measures: Vector measures generalize
probability measures by replacing scalar-valued probability values µ(S) ∈
[0, 1] with values in other cones C. For instance, a tensor-valued measure
µ assigns measurable sets S to d× d postive semidefinite matrices µ(S) ∈
Sd+ while satisfying analogous axioms to those laid out for probability
measures in §2.1. These tensor fields find application in diffusion tensor
imaging (DTI), which measures diffusivity of molecules like water in the
interior of the human brain as a proxy for directionality of white matter
fibers; OT extended to this setting can be used to align multiple such
images. A few recent models extend OT to this case and propose related
numerical methods [NGT15, CGT17, PCVS17].

6. Conclusion

The techniques covered in this tutorial are just a few of many ways to ap-
proach discrete optimal transport. New algorithms are proposed every month, and
there is considerable room for mathematical, algorithmic, and application-oriented
researchers to improve existing methods or make their own for different types of
data or geometry. Furthermore, mathematical properties such as convergence and
approximation quality are still being established for new techniques. Many ques-
tions also remain in linking to other branches of discrete differential geometry, e.g.
at the most fundamental level defining a purely discrete notion of optimal trans-
port compatible with polyhedral meshes or simplicial complexes without requiring
regularization and while preserving as much structure as possible from the smooth
case.

These challenges aside, discrete optimal transport is demonstrating that OT
holds interest far beyond mathematical analysis. New discretizations and algo-
rithms bring down OT’s complexity to the point where it can be incorporated into
practical engineering pipelines and into larger models without incurring a huge
computational expense. Further research into this new discipline holds unique po-
tential to improve both theory and practice and eventually to bring insight into
other branches of discrete and smooth geometry.
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[PCVS17] Gabriel Peyré, Lénäıc Chizat, François-Xavier Vialard, and Justin Solomon, Quan-

tum entropic regularization of matrix-valued optimal transport, European Journal

of Applied Mathematics (2017), 1–24.
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