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Conformal geometry of simplicial surfaces

Keenan Crane

1. Overview

What information about a surface is encoded by angles, but not lengths? This
question encapsulates the basic viewpoint of conformal geometry, which studies
holomorphic or (loosely speaking) angle- and orientation-preserving maps between
manifolds. In the discrete setting, however, the idea of literally preserving angles
leads to an interpretation of conformal geometry that is far too rigid : the space
of discrete solutions looks far more restricted than the space of smooth solutions
it hopes to model (Figure 1). Instead, one must consider how several equivalent
points of view in the smooth setting lead to a number of inequivalent treatments of
conformal geometry in the discrete setting. This activity has recently culminated in
a complete discrete uniformization theorem for polyhedral surfaces, which beautifully
mirrors the classic uniformization theorem for Riemann surfaces.

Why study discrete conformal geometry? From an analytic point of view,
smooth conformal maps provide a strong notion of regularity, since they are complex
analytic and hence have derivatives of all orders. In the discrete setting one therefore
obtains one possible notion of what it means for a discrete (e.g., simpicial) map to
be “regular,” even though no derivatives are available in the classical sense. From
a topological point of view, conformal maps help one define canonical mappings
between spaces—for instance, uniformization provides an explicit map between
any two conformally equivalent surfaces, by passing through a canonical domain of
constant curvature. Likewise, discrete conformal geometry can be used as a starting
point for constructing canonical maps between simplicial surfaces, even when they
do not have compatible triangulations [HK15, BCK18]. In applications, discrete
conformal geometry has become a powerful tool for digital geometry processing
algorithms, since many tasks ultimately boil down to solving sparse linear systems
or easy convex optimization problems. Discrete conformal maps have hence become
essential for tasks ranging from regular surface remeshing [CZ17], to machine
learning [MGA+17], to digital fabrication [KCD+16, SC18]. Discrete conformal
geometry also arises in the context of statistical mechanics, where theories based on
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Figure 1. In the smooth setting, conformal maps can be char-
acterized as maps that preserve angles and orientation. In the
discrete setting, naïve applications of this characterization lead to
definitions that are far too rigid: for instance, plane triangulations
that share interior angles are identical up to a global similarity
transformation.

discrete harmonic functions [Smi10] and circle patterns [Lis17, KLRR18] appear
to be quite natural.

Discretization of conformal maps is an excellent example of “The Game” played
in discrete differential geometry [CW17], since there are a large number of different
(yet equivalent) characterizations of conformal maps in the smooth setting, each
of which leads to a distinct starting point for a discrete definition. Consider for
instance a smooth, nondegenerate, and orientation-preserving map f from a disk-like
surface M with Riemannian metric g to the flat complex plane C. A reasonably
comprehensive list of ways to assert that f is conformal includes:

(1) (Angles) Preservation of angles—at every point p ∈M the angle between
any two tangent vectors X,Y ∈ TpM is the same as the angle between
their images dfp(X), dfp(Y ) in the plane.

(2) (Circles) Preservation of circles—the image of any geodesic circle of
radius ε approaches a Euclidean circle as ε goes to zero.

(3) (Analytic) The map f satisfies the Cauchy-Riemann equation—df(JX) =
ıdf(X) for all vector fields X, where ı is the complex unit and Jp : TpM →
TpM is the linear complex structure expressing a rotation by π/2 in each
tangent space (J 2

p = −id).
(4) (Metric) Conformal equivalence of metrics—the metric g onM is related

to the induced metric g̃ := df ⊗ df via a positive scaling g̃ = e2ug, where
u : M → R>0 is called the log conformal factor.

(5) (Conjugate) Conjugate harmonic functions—the map f can be ex-
pressed as f = a + bı, where a, b : M → R are harmonic functions with
orthogonal gradients of equal magnitude (∇b = J∇a).

(6) (Dirichlet) Critical points of Dirichlet energy—among all homeomor-
phisms from M to f(M), the map f is a critical point of the Dirichlet
energy ED(f) :=

∫
M
|df |2 dA, where dA is the area measure on (M, g).

(7) (Hodge) Hodge duality—the Hodge star on differential 1-forms induced
by f is the same as the pushforward under f of the 1-form Hodge star on
the original domain.
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To someone familiar with smooth conformal geometry this list may seem redundant,
since in most cases cases the conceptual leap between one characterization and
another is very small. Yet these minor shifts in perspective often lead to substantially
different interpretations in the discrete setting. In almost all cases, the “discrete
setting” means we are considering a domain M encoded as either

(1) a triangulated surface, or
(2) a quadrilateral net.

These notes focus primarily on triangulations; see [BG17] and references therein
for an overview of the quadrilateral case. Our aim is to give a broad overview of
some of the highlights of discrete conformal geometry; many details have therefore
been omitted (though see the bibliography for a detailed list of references). The
notes are organized into four parts:

• Part I explores how a naïve treatment of discretization (e.g., preservation
of angles in the triangulation, or direct discretization of the Cauchy-
Riemann equation) leads to definitions of discrete conformal maps that
are excessively rigid, or agree with the smooth theory only in the limit of
refinement.
• Part II shows the first glimpse of real “discrete” theories based on preser-
vation of circles (circle packings and circle patterns). This perspective
captures many important features of conformal geometry, and very nearly
provides a complete theory of discrete uniformization for general triangu-
lations.
• Part III considers the perspective of conformally equivalent discrete
metrics; this is to date the most satisfactory theory of conformal maps
for triangulated surfaces, since it comes with a complete uniformization
theorem.
• Part IV makes the connection between discrete conformal mapping prob-
lems and realization problems for ideal hyperbolic polyhedra, which also
illuminates the relationship between theories based on circles (Part II) and
conformally equivalent metrics (Part III).

Importantly, the focus in these notes on structure preservation should not
be confused with a value judgement on utility : numerical schemes that do not
exactly capture smooth structure may nonetheless be perfectly suitable for practical
computation (especially on fine tessellations), and are often less computationally
demanding than those that furnish an exact discrete theory. The same trade off can
be found throughout discrete differential geometry: exact structure preservation often
comes at significant computational cost relative to cheaper numerical alternatives.
A negative interpretation is that one is therefore stuck between fast but inexact
numerical schemes, and those that are “exact” but slow. A more mature point of
view is that the two sets of tools are complementary: fast numerical methods help
to initialize or approximate intermediate computations needed for exact, structure-
preserving schemes, which in turn provide valuable guarantees about the behavior
of algorithms. Beyond computation, discrete conformal geometry helps to bridge
several areas of mathematics, including some rather remarkable connections between
geometry, analysis, and combinatorics, as well as Euclidean and hyperbolic geometry.
It also highlights a central thesis of discrete differential geometry, namely that the
most important features of geometry are not inherently smooth nor discrete, but
(as we will see) can be faithfully described in either language.
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Figure 2. Topologically, we consider surfaces obtained by gluing
triangles along edges. A torus with one vertex (top), cone with two
vertices (middle), and sphere with three vertices (bottom) can each
be expressed as a ∆-complex, but not as a simplicial complex.

2. Preliminaries

Throughout we consider a compact connected surface M with Riemannian
metric g. In Part I we will mainly consider a differentiable map f from a disk-like
domain M to the complex plane C (with its usual Euclidean metric); this setup
allows us to focus on the local picture, and avoid issues of global topology or complex
structure. As discussed in Setion 1, there are many equivalent ways to express that
f is conformal ; we therefore refrain from choosing a canonical definition, and instead
discuss each characterization in turn. The differential dfp : Tp → Tf(p)C of the map
f expresses how tangent vectors on M are pushed forward to C. We will generally
assume that f is an immersion, meaning that its differential df is nondegenerate,
i.e., at each point p ∈ M , dfp(X) = 0 if and only if X = 0. In particular, every
conformal map is an immersion, whereas holomorphic maps can have isolated points
where the differential fails to be injective. Finally, the linear complex structure
associated with a surface (M, g) is a tangent space automorphism J : TM → TM
such that in each tangent space TpM , (i) J2

p = −id (where id denotes the identity
map), and (ii) gp(X,JpX) = 0; intuitively, J defines a quarter-rotation in each
tangent space compatible with the metric g (in analogy with the imaginary unit ı
in the complex plane), and is hence determined by the metric up to a global choice
of orientation.

In the discrete setting, we consider surfaces that can be obtained by gluing
together Euclidean triangles—the prototypical example is a Euclidean polyhedron
(such as the icosahedron), though we need not restrict ourselves to surfaces embedded
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in Rn. Usually it will be sufficient to consider simplicial complexes, though for the
general theory of discrete conformal equivalence (Part III) we must consider more
general triangulations—here it will be sufficient to work with ∆-complexes, as defined
by Hatcher [Hat02, Section 2.1]. Figure 2 gives several examples of triangulations
that are not simplicial but are expressible as ∆-complexes. Throughout, we will use
the term discrete surface to mean a topological 2-manifold triangulated by either
a simplicial or ∆-complex M = (V,E,F), where V, E, and F denote the vertices
(0-cells), edges (1-cells), and faces (2-cells), resp. We will use a (k + 1)-tuple of
vertex indices to specify a k-simplex; for instance, ij is an edge with vertices i, j ∈ V
and ijk is a face with vertices i, j, k ∈ V. (This convention is an abuse of notation
in the case of a ∆-complex, but the meaning will nonetheless be clear.) If a discrete
surface has finitely many triangles, we say that it is finite (and hence compact).
The star St(i) of a vertex i ∈ V is the subcomplex of M comprised of all simplices
that contain i.

The intrinsic geometry of a discrete surface M = (V,E,F) can be expressed via a
discrete metric, i.e., an assignment of positive edge lengths ` : E→ R>0 that strictly
satisfy the triangle inequality in each face:

`ij + `jk > `ki ∀ ijk ∈ F.

These edge lengths naturally define a piecewise Euclidean metric on M, obtained
by constructing disjoint Euclidean triangles with the prescribed lengths and gluing
them along shared edges. The resulting space has a singular Riemannian metric
g that is Euclidean away from vertices, and “cone-like” in a small neighborhood
around each vertex i ∈ V. Any such metric g is called a (polyhedral) cone metric; a
more formal definition is given by Troyanov [Tro91, p. 4].

Any discrete metric determines interior angles θjki at each vertex i of each
triangle ijk (e.g., via the law of sines). Letting

Θi :=
∑
ijk∈F

θjki

be the total angle around vertex i, the cone angle

(2.1) Ωi := 2π −Θi

measures how close the vertex is to being Euclidean, providing a discrete analogue for
Gaussian curvature. Intuitively, the intrinsic geometry looks like a circular Euclidean
cone, or more generally, a circular wedge of the Euclidean plane glued together
at opposite edges (Figure 3). Likewise, for any vertex i on the domain boundary,
the angle ki := π −

∑
ijk∈F θ

jk
i provides a discrete analogue for geodesic curvature.

Together, Ω and k satisfy a discrete Gauss-Bonnet theorem:
∑
i Ωi∈M +

∑
i∈∂M ki =

2πχ(M), where χ(M) := |V| − |E|+ |F| is the Euler characteristic of M.
For an embedded surface, the extrinsic geometry can be expressed as a piecewise
linear (or more properly, simplexwise affine) map interpolating given vertex coordi-
nates f : V→ Rn. Any such map is a discrete immersion if it is locally injective, or
equivalently, if for each vertex i ∈ V the restriction of f to St(i) is embedded [Cer96,
Lemma 2.2]. The condition that f be a (discrete) immersion not only excludes
vanishing angles, zero-length edges, and zero-area triangles, but also avoids discrete
branch points (see Figure 4). It would therefore be reasonable to require any def-
inition of a discrete conformal map to include the condition that f is a discrete



6 KEENAN CRANE

Figure 3. A cone metric is flat away from isolated cone points
i ∈ V, where it looks like a wedge of paper (possibly multiply-
covered) identified along the two marked edges. The angle deficit
or excess Ωi determines the curvature.

Figure 4. A discrete branch point, where a piecewise linear map
fails to be a discrete immersion.

immersion; a discrete holomorphic map should likewise be noninjective only at
vertices. Any discrete immersion f induces a corresponding discrete metric

`ij := |fj − fi|
(where | · | denotes the Euclidean norm); note that unlike the smooth setting this
metric is nondegenerate even in the presence of branch points.

Since conformal maps depend only on the intrinsic geometry of a surface, the
edges of a polyhedron have no geometric significance—even when the metric arises
from an embedding in Rn. For instance, consider an embedded polyhedron with two
triangles ijk, jil sharing an edge ij (Figure 5). Since this triangle pair is isometric
to a Euclidean quadrilateral (with two possible diagonals), an intrinsic observer
walking along the surface has no way to know when they are crossing the extrinsic
edge. Likewise, two discrete surfaces with different triangulations and sets of edge
lengths may nonetheless be isometric—consider for instance splitting the square
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Figure 5. A given polyhedron admits many different geodesic
triangulations, all of which describe the same intrinsic geometry.

Figure 6. A vertex of a polyhedron (left) is intrinsically the
same as a circular cone (right), and hence experiences infinite
scale distortion u when conformally flattened in the classical sense.
(Black lines depict pullback of integer grid lines under a conformal
flattening.)

faces of a cube along different diagonals. From this point of view, the intrinsic
geometry of a discrete surface is completely determined by the number of vertices,
along with their locations and cone angles. This situation motivates the construction
of intrinsic Delaunay triangulations (Setion 5.2), which play an important role in
the theory of discrete uniformization (Setion 5.3).

3. Part I: Discretized Conformal Maps

In Part I we consider several candidate ways to discretize conformal maps
f : (M, g) → C from a disk-like domain (M, g) to the complex plane C, each of
which fails to capture the behavior of smooth conformal maps in some essential way.
The first question to ask, perhaps, is: why do we need a new definition at all? After
all, a “discrete” surface is still a Riemannian manifold, and we should therefore be
able to apply standard definitions directly (perhaps with some extra care in order
to deal with cone points). This viewpoint of conformally equivalent cone metrics
has in fact been studied by Troyanov [Tro91], though for our purposes it is not the
right philosophical starting point: it views a polyhedron as a literal description of
the geometry we want to represent, rather than a proxy for a smooth surface. From
the classical Riemannian point of view a convex polyhedron does not look much
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like a smooth surface: it is flat almost everywhere, except at a discrete collection
of points where it locally looks like a cone. As depicted in Figure 6, a conformal
flattening of such a metric hence looks nothing like a flattening of a smooth surface,
since it has unbounded scale distortion u in the vicinity of each vertex. We are
therefore motivated to seek an alternative definition for discrete conformal maps,
which more faithfully captures the behavior we expect from smooth surfaces.

The notions studied in this part all begin with a fairly naive hypothesis (e.g.,
“discrete conformal maps should preserve angles”), which in each case leads to a
definition that is significantly more rigid than the smooth definition. An important
exception is the finite element treatment discussed in Setion 3.5, which provides
the expected degree of flexibility, but otherwise does not capture many of the
basic features of smooth conformal maps in an exact sense—for instance, even just
composing a given finite element solution with a Möbius transformation may yield a
map that is not the solution to any finite element problem. In all other cases, one can
still consider maps which come as close as possible to satisfying the naïve definition,
e.g., in the “least-squares” sense—until fairly recently, this point of view has been the
starting point for most practical computational algorithms [LPRM02, SLMB05].

3.1. Interior Angle Preservation. We first consider the most basic geomet-
ric characterization on conformal maps, namely that they should preserve angles.
In the smooth setting, an immersion f : M → C is conformal if at every point
p ∈ M the angle between any two tangent vectors X,Y ∈ TpM is the same as
the angle between their images dfp(X), dfp(Y ) in the plane. A very tempting idea,
then, is to seek a discrete immersion f : M→ C that preserves the interior angles
θjki at every triangle corner. However, it quickly becomes clear that this notion
of conformal equivalence is far too rigid: interior angles are preserved if and only
if each triangle ijk ∈ F experiences a similarity transformation, or (intrinsically)
if the new and old edge lengths in each triangle ijk are related by a scale factor
λijk > 0, i.e., ˜̀

ab = λijk`ab for ab ∈ ijk. At first glance this idea of locally scaling
the discrete metric in each triangle feels reminiscent of the scaling relationship
g̃ = e2ug between conformally equivalent smooth metrics g, g̃. However, since each
interior edge ij is shared by two triangles ijk, jil, the scale factors λijk, λjil of any
two adjacent triangles must be identical. Globally, then, any piecewise linear map
that preserves all interior angles is necessarily an isometry, up to a uniform scaling
by some constant factor c ∈ R>0. Hence, an angle-based definition of conformal
equivalence is far too rigid: each equivalence class is a one-parameter family of
discrete metrics, parameterized by a single constant c. In stark contrast, smooth
equivalence classes are parameterized by a scalar function, namely the log conformal
factor u : M → R. (Yet as we will see in Part III a different notion of metric scaling
will ultimately lead to the right notion of discrete conformal equivalence.)

One can nonetheless consider the map that distorts angles the least, i.e., the one
that minimizes the deviation of angles from their original values in the least-squares
sense [SS00]. To do so, suppose we parameterize piecewise linear maps f : M→ C
via the interior angles θ̃jki > 0 of the image f(M). These angles describe a valid
planar triangulation as long as they satisfy a collection of discrete integrability
conditions:

(1) For each triangle ijk ∈ F, θ̃jki + θ̃kij + θ̃ijk = π.
(2) For each interior vertex i ∈ V,

∑
ijk∈St(i) θ̃

jk
i = 2π.
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Figure 7. Angles that exhibit Euclidean sums around triangles
and vertices may still fail to characterize a valid triangulation.

(3) For each interior vertex i ∈ V,
∏
ijk∈St(i)

sin θ̃ki
j

sin θ̃ijk
= 1.

The first condition is the usual Euclidean triangle postulate; the second is simply
the requirement that every vertex have a Euclidean angle sum. As illustrated in
Figure 7, the third condition is a necessary closure condition on edge lengths around
each vertex, obtained by applying the law of sines to the relationship∏

ij∈St(i)

˜̀
i,j

˜̀
i,j+1

= 1,

where ˜̀
i,j and ˜̀

i,j+1 denote the lengths of consecutive edges in St(i) with respect
to counter-clockwise ordering. The best approximation of an angle-preserving map
(in the least-squares sense) is then any minimizer of the energy

Eang(θ̃) :=
∑
ijk∈F

(θ̃jki − θ
jk
i )2,

subject to the condition that the new angles θ̃ are positive and satisfy the discrete
integrability conditions outlined above. These angles determine a discrete metric
(up to a global uniform scaling), which in turn determines a discrete map to the
plane (up to Euclidean motions). Here again we observe too much rigidity in the
sense that Eang typically has only a single unique minimizer (up to Euclidean
motions), whereas in the smooth setting there is a large family of conformal maps
from any disk-like domain to the plane. However, this minimizer will at least be a
discrete immersion (due to condition (2) and the positive angle condition), and will
exhibit variable rather than uniform scaling. Further properties of such maps are
not well-understood—empirically, for instance, the minimizer of Eang appears to
approximate the conformal map of least area distortion, though this observation
has never been carefully analyzed. A variety of numerical algorithms for computing
such maps have been developed [SS00, SLMB05, ZLS07].

3.2. Cauchy-Riemann Equation. Analytically, smooth conformal maps on
a domain U ⊂ C are traditionally characterized by the Cauchy-Riemann equation,
which says that a map f : U → C; (x, y) 7→ u(x, y) + ıv(x, y) is holomorphic if

(3.1)
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.
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Figure 8. Geometrically, the Cauchy-Riemann equation asks that
pushing forward vectors via given map f commutes with scaling
and rotation.

If f is also an immersion (i.e., f has a nonvanishing derivative), then it is con-
formal. On regular quadrilateral nets, where one has clear “x” and “y” directions,
this coordinate description is a natural starting point for structure-preserving dis-
cretizations of holomorphic maps that capture much of the rich structure found in
complex analysis [BG17]. For general triangulated surfaces, where there are no
clearly distinguished coordinate directions, one must take a different approach. An
alternative way to write Equation (3.1) is

df(ıX) = ıdf(X),

where ı denotes the imaginary unit and X is any tangent vector field on U . In
other words, a complex map f is holomorphic if pushing forward vectors commutes
with 90-degree rotation. For a surface M with linear complex structure J , a map
f : M → C is likewise holomorphic if

(3.2) df(JX) = ıdf(X)

for all tangent vector fields X on M .
When applied to piecewise linear maps f : M→ C, this characterization again

leads to a definition for discrete conformal maps that is far too rigid. In particular,
the only affine maps that satisfy Cauchy-Riemann on a single triangle are Euclidean
motions and uniform scaling. We therefore encounter the exact same situation as
we did for angle preservation in Setion 3.1: in order for affine maps to agree across
shared edges, they must all exhibit identical scaling. Hence, a piecewise linear map
f is holomorphic in the sense of Equation (3.2) if and only if it is a global isometry,
up to a global uniform dilation.

As with angle preservation, one can nonetheless seek the piecewise linear map
f : V → C that best agrees with the Cauchy-Riemann equation. Consider for
instance the energy

(3.3) EC(f) :=

∫
M

| ∗ df − ıdf |2 dA,

which measures the L2 residual of Equation (3.2); here, ∗ denotes the Hodge
star operator on differential 1-forms. To avoid the trivial solution f = 0, one
typically incorporates a pair of point constraints f(a) = 0, f(b) = 1 (for a, b ∈M ,
a 6= b). Minimizing this energy over piecewise linear maps f leads to a standard
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Figure 9. Top: two critical points f1, f2 of discrete Dirichlet energy
among piecewise linear maps f from a triangulated disk M to the
unit circular disk in the plane. Bottom: maps visualized by pulling
back coordinate lines under f1, f2.

Galerkin finite element method, yielding a corresponding discrete energy ÊC(f) (see
[CdGDS13, Chapter 7] for a detailed derivation); this approach was one of the
earliest starting points for practical conformal surface parameterization [LPRM02].
As with Eang, the (constrained) discrete energy ÊC typically has a unique minimizer.
In contrast, the smooth energy EC has an enormous space of minimizers—consider
composing any minimizer f with an in-plane conformal map η : f(M)→ C. Hence,
the unique minimizer chosen by ÊC will depend in an unstable way on superficial
features of the problem (such as the choice of tessellation), hinting at some of the
practical difficulties with definitions that are “too rigid”. For further discussion, see
[MTAD08, Section 3] and [SC17, Section 2].

3.3. Critical Points of Dirichlet Energy. The Dirichlet energy of a differ-
entiable map f : M1 →M2 between Riemannian manifolds (M1, g1) and (M2, g2) is
the functional

ED(f) :=

∫
M1

|df |2 dV,

where dV is the volume measure on M1; f is harmonic if it is a critical point
of ED. Purely topological conditions determine whether a harmonic map is also
holomorphic:

Theorem 3.1 (Eells & Wood 1975). If f : M1 →M2 is a harmonic map and

χ(M1) + |deg(f)χ(M2)| > 0,

then f is either holomorphic or antiholomorphic (where χ(M) is the Euler charac-
teristic of M , and deg(f) is the topological degree of f).

Antiholomorphic simply means angle preserving and orientation reversing, rather
than orientation preserving. For instance, any harmonic map from the sphere to
itself automatically preserves angles, since in this case χ(M1) = χ(M2) = χ(S2) = 2.
Likewise, any harmonic map f from a topological disk M to the unit disk D2 ⊂ C
will be angle-preserving, since here χ(M) = χ(D2) = 1. Hence, we can attempt
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to define discrete holomorphic maps as those that minimize some kind of discrete
Dirichlet energy.

For a discrete surface M = (V,E,F) with metric ` : E → R>0, the discrete
Dirichlet energy of a map f : V→ C can be defined as

(3.4) ÊD(f) :=
∑
ij∈E

wij |fj − fi|2

for any collection of edge weights wij which make this energy a positive-semidefinite
quadratic form (i.e., ÊD(f) ≥ 0 for all piecewise linear maps f). Letting k and l
be the vertices opposite edge ij, a common choice is the cotangent weights wij :=
1
2 (cot θijk + cot θjil ), which arise from the finite element discretization mentioned in
Setion 3.2. (Other choices are also possible—see for instance [HS15].) A discrete
holomorphic map to a fixed region U ⊂ C can then be defined as a critical point
of ÊD, subject to the condition that boundary vertices are mapped to ∂U ; this
map will look conformal (rather than just holomorphic) if the boundary polygon
has a unit turning number—see Figure 9 for two examples. This point of view was
originally considered by Hutchinson [Hut91]; see also [PP93].

A closely related point of view is that, in the smooth setting, the conformal
energy EC(f) of any map f : M → C can be expressed as the difference between
the Dirichlet energy ED(f) and the signed area A(f) of the image f(M), i.e.,

EC(f) = ED(f)−A(f)

(see [CdGDS13, Chapter 7]). In the case where the target is fixed (e.g., if one
considers only maps to the unit disk), the area term A is constant, and hence ED
will have the same minimizers as EC . One can hence define a discrete conformal
map f as a minimizer of the discrete Dirichlet energy ÊD (Equation (3.4)) minus
the signed area of the target polygon (subject to the same point constraints as in
Setion 3.2), giving another quadratic form in f:

Â(f) := 1
2

∑
ij∈∂M

fi × fj ;

here ∂M denotes the collection of oriented edges in the boundary of M, and z1×z2 :=
Im(z̄1z2). This formulation is used as the starting point for several practical
algorithms in digital geometry processing [DMA02, MTAD08]. It turns out,
however, that the energy ÊD−Â is identical to the energy ÊC obtained by discretizing
the Cauchy-Riemann equations [CSD02]. Its minimizers therefore exhibit the same
degree of rigidity as before.

3.4. Hodge Duality. Consider the Hodge star ∗ on differential 1-forms α,
which on a smooth surface with linear complex structure J can be expressed via
the relationship1

∗α(X) = α(JX)

for all tangent vector fields X. Since conformal maps preserve the linear complex
structure, they also preserve the 1-form Hodge star. In the discrete setting, one
can reverse this relationship and try to define a discrete conformal map as one that
preserves the (discrete) Hodge star [Mer01]. In particular, differential forms can
be discretized as cohains on a simplicial manifold and its polyhedral dual [Wil05,
DHLM05]. A fairly common discretization of the Hodge star is then a “diagonal”

1Note that some authors adopt an opposite orientation convention, i.e., ∗α(X) = −α(JX).
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Figure 10. The ratio of dual over primal edge length is equal to
half the sum of the cotangents of the opposite angles θijk , θ

ji
l .

linear map from primal k-cochains to dual (n − k)-cochains determined by the
ratio of primal and dual volumes. In the particular case of discrete 1-forms on a
triangulated surface and its circumcentric dual, a discrete differential 1-form can
be encoded via a value αij per primal edge, and the corresponding (Hodge) dual
1-form can be expressed as a value on each dual edge via the cotangent formula:

(3.5) ∗ αij := 1
2 (cot θijk + cot θjil )︸ ︷︷ ︸

wij

αij ,

where θijk , θ
ji
l are the angles opposite ij, as depicted in Figure 10. A discrete

conformal map in the sense of Hodge duality is then any piecewise linear map for
which the new angles θ̃ satisfy cot θ̃ijk + cot θ̃jil = 2wij , or, from an intrinsic point of
view, any new assignment of edge lengths ˜̀

ij that preserves this same quantity.
Initially, one might be optimistic that a discretization based on the Hodge star

yields less rigidity than one based on preservation of angles, since (at least naïvely)
preservation of the edge weights wij effectively places only |E| ≈ 3|V| conditions on
the map f , whereas preservation of interior angles θjki corresponds to 3|F| ≈ 6|V|
constraints. However, recent analysis [ZGLG12, GMMD14] extinguishes any
such optimism:

Theorem 3.2. The primal-dual length ratios wij := 1
2 (cotαij + cotβij) on a

given discrete surface M = (V,E,F) uniquely determine the discrete metric ` : E→ R,
up to global scaling.

The proof relies on the fact that a metric exhibiting a prescribed Hodge star
can be obtained as a minimizer of a convex function, where the Hessian at any such
minimizer has a kernel consisting only of vectors corresponding to global scaling
of `—exactly the same degree of rigidity as with angle preservation (Setion 3.1),
Cauchy-Riemann (Setion 3.2), and Dirichlet energy (Setion 3.3).

3.5. Conjugate Harmonic Functions. Suppose we express a holomorphic
map f : M → C as f = a+ bı for a pair of real-valued functions a, b : M → R. A
straightforward consequence of the Cauchy-Riemann equation (Setion 3.2) is that a
and b form a conjugate harmonic pair, i.e., they are real harmonic functions with
orthogonal gradients:

(3.6)
∆a = 0,
∆b = 0,
∇b = J∇a,
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Figure 11. One possible notion of discrete conjugacy: a function
on primal (black) vertices is conjugate to a function on dual (white)
vertices if the difference across primal edges is equal to the difference
across dual edges, up to a constant factor that accounts for triangle
shape.

Here ∆ is the Laplace-Beltrami operator on M , ∇ is the gradient operator, and J
is the linear complex structure.

The conditions in Equation (3.6) are of course closely related to (in fact,
equivalent to) the condition that the map itself be a critical point of Dirichlet
energy (Setion 3.3), but the perspective of conjugate harmonic pairs will provide a
different starting point for discretization, where boundary conditions play a key role.
Characterizing conformal maps in terms of harmonic functions is also attractive from
the perspective of discretization, since discrete harmonic functions are well-studied.
In the simplicial setting, a discrete harmonic function φ : V → R is naturally defined
as a piecewise linear function in the kernel of a discrete Laplace-Beltrami operator
L : V→ V such as the cotan Laplacian

(3.7) (Lφ)i := 1
2

∑
ij∈E

(cot θijk + cot θjil )(φj − φi).

(See [WMKG07] for a more thorough discussion.) To define a conjugate harmonic
pair, one then just needs a discrete notion of conjugacy.

What does it mean for two discrete harmonic functions to be conjugate? One
idea, studied by Mercat and others [Mer01], is to consider functions on the combi-
natorial or Poincaré dual of a discrete surface M = (V,E,F), which associates each
vertex with a 2-cell, each edge with a 1-cell, and each triangle with a 0-cell. In this
setting, two real-valued functions a, b on the primal and dual 0-cells (resp.) are
discretely conjugate if for each edge e and corresponding dual edge e∗, the difference
of a values across e is equal to the difference of b values across e∗, up to a scale
factor we ∈ R that accounts for the geometry of the triangulation (as discussed in
Setion 3.4). In other words, if

bj∗ − bi∗ = wij(aj − ai)

for all edges ij ∈ E, where i∗, j∗ are the associated dual vertices (see Figure 11).
In terms of (discrete) differential forms, we are simply requiring that db = ∗da,
capturing the conjugacy condition ∇b = J∇a. Here one encounters two basic
sources of difficulty. First, as detailed in Setion 3.4, if one views the conformal
structure of a discrete surface as being determined by the edge weights wij (or
discrete Hodge star), then one encounters severe rigidity: the weights uniquely
determine a discrete metric. Moreover, pairs of functions a, b that are conjugate in
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this sense do not define a simplicial mapping from M to C, since the coordinates b
are associated with 0-cells of the dual complex, rather than vertices of the original
discrete surface M.

Alternatively, one can take the following approach: given a discrete harmonic
function a (i.e., a piecewise linear function satisfying La = 0), its harmonic conjugate
can be defined as the function b : V→ R that minimizes the L2 difference between
J∇a and ∇b over the space of piecewise linear functions—or equivalently, which
minimizes the discrete conformal energy ÊC(f) = ÊD(f)− Â(f) of a map f = a + bı
(Setion 3.3), while keeping a fixed. The minimizer is the solution to the discrete
Laplace equation Lb = 0 with discrete Neumann boundary data

hi =
1

2
(ai+1 − ai−1),

where i−1, i, and i+1 denote consecutive vertices along the boundary
(see [SC17, Section 4.3.3] for more detail). The resulting map
f := a+bı is then discrete conformal in the same finite element sense
discussed in Setion 3.2. Importantly, however, one finally obtains
exactly the right amount of flexibility: whereas a “least squares”
conformal map [LPRM02] of the kind discussed in Setion 3.2 is
determined up to Euclidean motions, one now obtains a whole
family of discrete conformal maps f parameterized by the harmonic
function a. Since this function is in turn determined by its own
boundary values, one ends up in precisely the same situation as
in the smooth setting, where holomorphic maps f : M → C can
be parameterized by real functions on ∂M specifying either Dirichlet or Neumann
boundary conditions. A more geometric view is that one can parameterize such
maps by specifying either the log conformal factor u or the geodesic curvature κ
along the boundary—Sawhney & Crane [SC17] outline a complete strategy in the
piecewise linear setting.

Ultimately, it should come as no surprise that a proper finite element treatment
should faithfully capture the behavior of smooth conformal maps in the limit of
refinement. On the other hand, for any fixed triangulation, such maps do not exactly
preserve many basic properties from the smooth setting, such as covariance with
respect to Möbius transformations. Moreover, they do not provide a natural notion
of equivalence—for instance, the composition of two piecewise linear harmonic
functions is not in general harmonic. We will therefore continue in Parts II and III
to seek a precise notion of discrete conformal equivalence for finite triangulations.

4. Part II: Circle Preservation

A linear map preserves angles if and only if it is the composition of a rotation
and a dilation (no shear); hence, it also preserves circles. Since at each point
p ∈M the differential dfp of a conformal map f is an angle-preserving linear map,
it must also preserve infinitesimal circles. This point of view is the starting point
for several distinct but closely-related approaches to discrete conformal maps, based
on arrangements of circles with special combinatorial and geometric relationships.

Finite arrangements of circles provide fertile soil for discrete conformal maps,
capturing many features of the smooth theory. Koebe originally showed how
incidence relationships in planar graphs can be captured via tangency relationships
between circles, providing a basic connection between combinatorics and geometry.
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Figure 12. Left: a smooth Riemann mapping from a simply
connected region in the plane to the unit circular disk. Right: a
discrete Riemann mapping, expressed as a circle packing.

Thurston conjectured (and Rodin & Sullivan later proved) that these circle packings
have a deep connection to Riemann mappings in the complex plane (Setion 4.1); such
connections have since been studied intensively by Schramm [Roh11] and many
others. To generalize this construction to curved surfaces and irregular triangulations
one must incorporate additional geometric information, such as intersection angles
or other data describing relationships between circles; such arrangements fall under
the general heading of circle patterns2 (Setion 4.2).

There are however some missing features, most notably the lack of a uniformiza-
tion theorem that guarantees the existence of a constant curvature circle pattern
equivalent to any given triangulation. In Part III we will see a discrete uniformiza-
tion theorem which guarantees existence by considering variable rather than fixed
triangulations; whether one can take an analogous approach in the circle pattern
setting remains to be seen. Note that circle packings and patterns have been studied
extensively beyond the context of triangulations and discrete conformal maps; see
for instance [Ste05, BS04a, BHS06, WP11].

4.1. Circle Packings. A circle packing is a collection of closed circular disks
in the plane (or other surface) that intersect only at points of tangency—see [Ste03]
for an excellent overview. To any such collection one can associate a graph G = (V,E)
(called the nerve) where each vertex corresponds to a disk, and two vertices are
connected by an edge if and only if their associated disks are tangent. A natural
question to ask is: which graphs admit circle packings?

Theorem 4.1 (Circle Packing). Every planar graph G = (V,E) can be realized
as a circle packing in the plane.

(For nonplanar graphs, one can also consider circle packings on surfaces of
higher genus.) A first hint that circle packings are connected to discrete conformal
maps comes via the following theorem:

Theorem 4.2 (Koebe). If G is a connected maximal planar graph, then it has
a unique circle packing up to Möbius transformations and reflections.

(A constructive algorithm for computing such packings was given by Collins
& Stephenson [CS03].) A graph is maximal if the addition of any edge makes it

2There is some inconsistency in the use of packings versus patterns throughout the literature—
for clarity we adopt the convention that packings are arrangements of circles meeting tangentially,
whereas patterns describe any arrangement of circles (possibly overlapping or disjoint), whether
associated with vertices, faces, etc.
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Figure 13. Discrete surfaces with identical combinatorics but
different edge lengths (left) yield the same class of circle packings
into the unit disk (right).

nonplanar. If G is also finite, one quickly sees that it is equivalent to a triangulation
of the sphere, via stereographic projection. Koebe’s theorem therefore says that any
triangulated sphere can be realized as a family of planar circle packings parameterized
by Möbius transformations, just as smooth conformal maps from the sphere to the
plane have Möbius symmetry. An even richer connection between circle packings
and conformal maps can be made via the Riemann mapping theorem:

Theorem 4.3 (Riemann mapping). Any nonempty simply connected open set
Ω ( C can be mapped to the interior of the unit circular disk D2 := {z ∈ C : |z| < 1}
by a bijective map φ : Ω → D2 that is holomorphic (hence conformal) in both
directions.

The circle packing analogue of Riemann mapping was originally conjectured
by Thurston, and later proved by Rodin and Sullivan [RS87]. The basic idea is
to start with a regular hexagonal circle packing C of a simply connected region
Ω by disks of radius ε > 0, i.e., for any hexagonal tiling of the plane, take only
those disks that intersect Ω. Now find a circle packing C ′ that maintains the same
incidence relationships, but where all disks along the boundary are now tangent
to the unit circular disk D2 (this idea is illustrated in Figure 12, right). The
relationship between these two packings defines an approximate mapping of Ω to D2:
for sufficiently small ε any point z ∈ Ω will be contained in a circle c from C, and can
be mapped to the center of the corresponding circle c′ from C ′. Rodin and Sullivan
show that the approximate mapping converges to a conformal homeomorphism as
ε −→ 0.

Unlike smooth Riemann mappings, however, one cannot directly use circle
packings to define discrete conformal maps between any two disk-like regions,
since finite hexagonal packings of these regions will not in general have the same
combinatorics. More importantly, this theory does not provide a general approach
to uniformization, since it cannot account for the curvature of the domain, nor
triangulations with nonuniform edge lengths. Consider for instance simplicial disks
with identical combinatorics but different discrete metrics ` : E→ R>0, as depicted
in Figure 13. Since a circle packing depends purely on the combinatorics of the edge
graph, these surfaces are realized by identical families of circle packings—implying
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that all discrete metrics on a given simplicial disk are, effectively, conformally
equivalent. In this sense, the basic theory of circle packings is too flexible; one is
therefore prompted to enrich it with additional data.

4.2. Circle Patterns. A more direct way
to encode the geometry of the domain is to in-
corporate additional metric information into the
arrangement of circles. Suppose we associate
each edge ij ∈ E of a triangulation M = (V,E,F)
with an angle ωij ∈ [0, π2 ]; the pair (M, ω) is
called a weighted triangulation. If we now as-
sign a radius ri > 0 to each vertex i ∈ V, then
a pair of circles in the Euclidean plane with the
prescribed intersection angle ωij and radii ri, rj
will have centers separated by a distance

(4.1) `ij =
√
r2i + r2j + 2rirj cosωij .

The condition ω ≤ π/2 ensures that these lengths satisfy the triangle inequality in
each face ijk ∈ F (see [Thu79, Lemma 13.7.2]); they hence determine a discrete
metric on the surface (called the circle packing metric), and in turn, a corresponding
cone angle Ωi at each vertex (Equation (2.1)). We can make an analogy between
each of these quantities and data from the smooth setting:

• the edge lengths `ij encode the metric,
• the cone angles Ωi encode the Gaussian curvature,
• the intersection angles ωij capture the conformal structure, and
• the radii ri (or more precisely, any subsequent changes to the radii) play

the role of conformal scale factors.
The last two items on this list can be understood by considering that (i) angles are
conformal invariants, and (ii) adjusting the radii (scale factors) will scale the edge
lengths ` (metric) while keeping the angles ω (conformal structure) fixed. From this
point of view, finding a conformal map from a curved surface (Ω 6= 0) to a flat one
(Ωi = 0 at all vertices) amounts to finding an appropriate adjustment of radii, i.e.,
finding the conformal scale factors that flatten the metric. Note however that it is
not immediately clear that a target angle defect Ω can always be achieved—and in
general it cannot. In particular, we have the following theorems [Thu79]:

Theorem 4.4 (rigidity of circle patterns). For a closed weighted triangulation
(M, ω), an assignment of cone angles Ωi to vertices uniquely determines a unique
discrete metric `ij if one exists—in other words, if there are radii ri at vertices
such that (i) circles intersect at the prescribed angles ω and (ii) the edge lengths
determined by Equation (4.1) induce the prescribed cone angles Ω, then this circle
pattern is unique up to a uniform scaling of all circle radii / edge lengths.

Theorem 4.5 (existence of circle patterns). Let M = (V,E,F) be a closed
weighted triangulation with weights ω, and for any subset of vertices I ⊂ V let Lk(I)
and FI denote the simplicial link of I and the set of faces with vertices in I, resp.
Then prescribed cone angles Ωi can be achieved if and only if∑

i∈I

Ωi +
∑

ij∈Lk(I)

(π − ωij) > 2πχ(FI),
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where χ denotes the Euler characteristic.

In short: one cannot prescribe curvature arbitrarily, but if the prescribed
curvature can be achieved, then it uniquely determines the metric (up to global
scaling). The condition in Theorem 4.5 is akin to Gauss-Bonnet, but much stronger:
just as any metric can be uniformized in the smooth setting, one would like the
existence of discrete uniformization to depend only on a basic Gauss-Bonnet condition
on the curvature data Ω, and not on the data ω describing the domain itself.

Generalizations. Generalizations of
the circle patterns described above pro-
vide greater flexibility. One such gen-
eralization, first studied by Bowers and
Stephenson [BS04b], is an inversive dis-
tance circle packing—here we exchange
the angles ωij for values Iij ∈ [−1,∞),
and define the edge lengths via the in-
versive distance

`ij =
√
r2i + r2j + 2rirjIij .

When Iij = 1 circles are tangent, when Iij < 1 they intersect at an angle ωij =
arccos(Iij), and when Iij > 1 they are disjoint. In this setting one again has local
and global rigidity theorems akin to Theorem 4.4 [Guo11, Luo11, Xu18], though
no guarantee of existence due to conditions like the one from Theorem 4.5.

One can also associate a circle pattern with the faces of a triangulation, rather
than its vertices. Let (M, ω) be a weighted triangulation where (i) the weights ωij
sum to 2π around each interior vertex, and (ii) the values κi := 2π −

∑
ij ωij sum

to 2π over all boundary vertices. One can then find a Euclidean circle pattern with
one circle per face, so long as there is a collection of interior angles αjki that satisfy
Rivin’s coherent angle system [Riv94], namely

(1) (Positivity) αjki > 0 at each triangle corner.
(2) (Triangle Postulate) αjki + αkij + αijk = π for each face ijk.
(3) (Compatibility) π − ωij is equal to αijk + αjil for each interior edge ij, and

equal to αijk for each boundary edge ij.
For instance, if ωij are the intersection angles of the

triangle circumcircles in a planar Delaunay triangulation,
then the circle pattern will reproduce this triangulation,
up to a global similarity. Existence and uniqueness (up
to similarity) can be obtained through variational ar-
guments [BS04a]. However, this construction does not
directly address the task of uniformization, since for a
curved domain the intersection angles ωij will not in
general sum to 2π around interior vertices. A practical
approach to conformal flattening via facewise circle pat-
terns was proposed by Kharevych et al. [KSS06], who
first construct a collection of interior angles α that (i) satisfy Rivin’s conditions, and
(ii) approximate the interior angles θjki of the curved domain in the least-squares
sense. This particular treatment does not however provide a clean notion of discrete
conformal equivalence for general (i.e., non-flat) discrete surfaces.
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Other generalizations, such as hyper-ideal circle patterns [Sch08, Spr08], finally
provide the right degree of flexibility. In this setting, one associates circles with
both vertices and edges—and obtains a discrete uniformization theorem in the case
of surfaces with non-positive curvature [BDS17], even with fixed combinatorics.
Such results suggest that it is not unreasonable to expect a complete discrete
uniformization theorem based on patterns of circles (namely, one that includes the
positively curved case), though at present it would seem that perhaps the ending
has not yet been written.

4.3. Discrete Ricci Flow. In the smooth setting, one approach to uniformiza-
tion is to consider Hamilton’s Ricci flow [Ham82], which for surfaces can be
expressed as

d

dt
g = −Kg.

Here K denotes the Gaussian curvature of the current metric g. Intuitively, Ricci
flow shrinks the metric where curvature is “too positive,” and expands it where
curvature is “too negative,” ultimately smoothing out all bumps in curvature. Since
the flow applies a pointwise rescaling at each moment in time, the final, uniformized
metric is conformally equivalent to the initial one. Often one considers a normalized
version of this flow

d

dt
g = (K −K)g

where K is the average Gaussian curvature over the domain; this flow becomes
stationary when the metric has constant curvature.

Chow and Luo [CL03] consider a discrete analogue of this flow based on weighted
triangulations (with intersection angles ωij ∈ [0, π2 ])—in particular, they define the
(normalized) combinatorial Ricci flow

d

dt
ri = (Ω− Ωi)ri,

where the values Ωi are the cone angles of the circle packing metric determined
by ri, and Ω is the average cone angle. If one considers the effect of the radii r
on the discrete metric `, this flow has the same basic behavior as Ricci flow: the
metric is rescaled in order to smooth out bumps in curvature. Chow and Luo show
that this flow is defined for all time and converges to a constant curvature metric if
one exists, i.e., the flow does not uniformize all initial metrics—the condition on
existence is the same as the one given in Theorem 4.5. Nonetheless, the flow behaves
well enough in practice to provide a starting point for a wide variety of algorithms
in geometric computing [GY08]. Circle patterns can also be connected with other
geometric flows such as Calabi flow [Ge18, ZLH+18], though again Thurston’s
condition (Theorem 4.5) must of course hold in order to guarantee existence of a
uniformized circle packing metric.

Luo also considered a closely related combinatorial Yamabe flow [Luo04],
defined in terms of a different discrete analogue of conformal maps (i.e., one that
is not based on circle packings or patterns). This flow provides a starting point
for the notion of discrete conformal equivalence that we will study in Part III, and
ultimately, to a complete discrete uniformization theorem where existence can be
guaranteed.
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5. Part III: Metric Scaling

In the smooth setting, two Riemannian metrics g, g̃ on a surface M are con-
formally equivalent if they are related by a positive scaling, i.e., if g̃ = e2ug for
some function u : M → R called the log conformal factor. Hence, eu gives the
length scaling, and e2u is the area scaling. A conformal structure on M is then an
equivalence class of metrics.

This section examines a definition for conformal equivalence of discrete metrics
that resembles the one found in the smooth setting, and which ultimately allows one
to formulate a discrete uniformization theorem for polyhedral surfaces (Setion 5.3)
that mirrors the one for smooth Riemann surfaces. From an applied point of view
discrete uniformization provides a principled starting point for tasks like regular sur-
face remeshing [CZ17] and constructing maps between polyhedral surfaces [HK15].
We begin with a basic picture involving only Euclidean geometry (Setion 5.1), and
will revisit this story through the lens of hyperbolic geometry in Part IV.

5.1. Conformally Equivalent Discrete Metrics. Recall that a discrete
metric is an assignment of edge lengths ` : E → R>0 that satisfy the triangle
inequality in each face, i.e., `ij + `jk ≥ `ki for all ijk ∈ F. What does it mean for
two discrete metrics `, ˜̀ to be conformally equivalent? One idea is to simply mimic
the smooth definition and ask that ˜̀

ij = λij`ij for some scale factor λij on each edge
ij ∈ E. However, this constraint is clearly “too flexible,” since then every pair of
discrete metrics is conformally equivalent—simply let λij be the ratio ˜̀

ij/`ij . Also
recall from Setion 3.1 that a scale factor per face is “too rigid,” since one is then
forced to make all scale factors equal. An alternative is to consider scale factors at
vertices [RW84, Luo04]:

Definition 5.1. Two discrete metrics `, ˜̀ on the same triangulation M =
(V,E,F) are discretely conformally equivalent if for each edge ij ∈ E,

(5.1) ˜̀
ij = e(ui+uj)/2`ij ,

for some collection of values u : V→ R.
This definition again gives the impression of merely aping the smooth relationship—
yet in this case the resulting theory is neither too rigid nor too flexible. Instead, it
provides a rich notion of discrete conformal equivalence that beautifully preserves
much of the structure found in the smooth setting [BPS15, GLSW18], a perspec-
tive which has had a significant impact on (and has been inspired by) algorithms
from digital geometry processing [SSP08, BCGB08, CZ17].

One elementary observation is that, locally, conformally equivalent discrete
metrics in the sense of Equation (5.1) are still very flexible:

Lemma 5.2. Any two discrete metrics `, ˜̀ on a single triangle ijk are discretely
conformally equivalent.

Proof. The metrics are conformally equivalent if there exists an assignment of
log scale factors ui, uj , uk to the three vertices such that

e(ua+ub)/2 = ˜̀
ab/`ab

for each edge ab ∈ ijk. Let λij := 2 log(`ij) (and similarly for ˜̀). Then by taking
the logarithm of the system above we obtain a linear system for the u values, namely

ua + ub = λ̃ab − λab, ∀ab ∈ ijk.
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Figure 14. A piecewise linear map is discrete conformal if and
only if it preserves the length cross ratio cij := `il`jk/`ki`lj for each
interior edge ij.

This system has a unique solution, independent of the values of ` and ˜̀. In particular,

(5.2) eui =
˜̀
ij

`ij

`jk
˜̀
jk

˜̀
ki

`ki
,

and similarly for uj , uk. �

At this point it might be tempting to believe that all discrete metrics are
conformally equivalent, since they are equivalent on individual triangles. However,
since scale factors (at vertices) are shared by several triangles, one still obtains an
appropriate degree of rigidity. In particular, an important observation is that all
metrics within the same discrete conformal equivalence class can be identified with
a canonical collection of length cross ratios [SSP08]:

Definition. Let ` : E → R>0 be a discrete metric on a triangulated surface
M = (V,E,F). For any pair of triangles ijk, jil ∈ F sharing a common edge ij ∈ E,
the associated length cross ratio is the quantity

(5.3) cij :=
`il`jk
`ki`lj

.

Theorem 5.3. Two discrete metrics `, ˜̀ on the same triangulation M are
discretely conformally equivalent if and only if they induce the same length cross
ratios c, c̃.

Proof. First suppose that `, ˜̀ are discretely conformally equivalent, i.e., that
˜̀
ij = e(ui+uj)/2`ij for some collection of log conformal factors ui : V→ R. Then

c̃ijkl =
˜̀
il

˜̀
jk

˜̀
ki

˜̀
lj

=
e(ui+ul)/2e(uj+uk)/2`il`jk
e(uk+ui)/2e(ul+uj)/2`ki`lj

=
`il`jk
`ki`lj

= cijkl.

Now suppose that `, ˜̀ induce identical cross ratios, i.e., c = c̃. By Lemma 5.2, these
metrics already satisfy the conformal equivalence relation on individual triangles.
In particular, for any pair of adjacent triangles ijk, jil, we can find compatible
log scale factors ui, uj , uk and vj , vi, vl. Moreover, these scale factors will agree on
the shared edge ij if and only if ui = vi and uj = vj . Applying Equation (5.2) we
discover that this compatibility condition is equivalent to

`jk
˜̀
jk

˜̀
ki

`ki
=

˜̀
il

`il

`lj
˜̀
lj

,

i.e., equality of cross ratios. �
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The length cross ratios c : E → R effectively specify a point in the Teich-
müller space of discrete metrics; see [BPS15, Remark 2.1.2] for further discussion.
Extrinsically, it is not hard to show that for a discrete surface immersed in Rn,
length cross ratios will be preserved by Möbius transformations of the vertices
(assuming that the transformed vertices are connected by straight segments rather
than circular arcs). As in the smooth setting, however, the space of maps f : V→ C
that induce a discretely conformally equivalent metric ˜̀

ij := |fj − fi| is much larger
than just the space of Möbius transformations. One characterization is that discrete
conformal maps (in this sense) correspond to piecewise projective maps that pre-
serve triangle circumcircles [SSP08, Section 3.4]. Connections between conformally
equivalent discrete metrics and piecewise Möbius transformations have also been
studied [VMW15].

Two elementary examples help reinforce the connection between smooth and
discrete conformal equivalence:

Example 5.4 (discrete metrics on the two-triangle sphere). In the smooth
setting, all 2-spheres have the same conformal structure. Consider the triangulation
of the 2-sphere by two triangles depicted in Figure 2, bottom. Any discrete metric
on this triangulation is determined by three edge lengths `ij , `jk, `ki > 0 satisfying
the triangle inequality. By the same argument as in Lemma 5.2, all discrete metrics
on this triangulation of the sphere are discretely conformally equivalent—mirroring
the situation in the smooth setting.

Example 5.5 (discrete metrics on the two-triangle torus). In the smooth setting,
there is a two-parameter family of conformal structures on the torus. Consider the
triangulation of the torus depicted in Figure 2, top. Any discrete metric on this
triangulation is determined by three edge lengths a, b, c corresponding to the edge
marked with a single arrow, the edge marked with a double arrow, and the diagonal.
Since there is only one vertex in the triangulation (and hence one scale factor), two
such metrics are discretely conformally equivalent if and only if they are related by
a uniform scaling—partitioning the three-parameter family of discrete metrics into
a two-parameter family of conformal classes (as in the smooth setting).

There are however major difficulties with the theory discussed so far: it only
allows us to discuss conformal equivalence of polyhedra with identical combinatorics,
since it depends on comparing values associated with edges—at this point, for
instance, it is not even possible to say that two different triangulations of the
cube (with square faces split along different diagonals) are discretely conformally
equivalent, even though they are isometric in the usual sense. Moreover, procedures
for uniformizing a given discrete metric (discussed in Setion 5.3) may break down
before achieving constant curvature, i.e., the metric may degenerate into a collection
of edge lengths where the triangle inequality no longer holds. In order to develop a
full theory of discrete uniformization, we therefore have to understand what it means
for two combinatorially inequivalent polyhedra to be conformally equivalent. For
this, we first need to consider a structure called the intrinsic Delaunay triangulation,
which enables us to associate a canonical triangulation with any polyhedral cone
metric.

5.2. Intrinsic Delaunay Triangulations. Delaunay triangulations arise nat-
urally throughout discrete and computational geometry, and have numerous charac-
terizations. For a triangulation in the plane, the most typical characterization is that
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the circumcenter of every triangle is “empty,” i.e., no vertices of the triangulation are
contained in its interior. An equivalent condition is that the sum of angles opposite
every interior edge must be no greater than pi, i.e., for any two triangles ijk, jil
sharing an edge jil,

(5.4) θijk + θjil ≤ π.
Unlike the empty circumcircle definition, the angle sum condition generalizes in a
straightforward way to any triangulated surface M = (V,E,F) with discrete metric
` : E → R>0, since interior angles θ are determined (via the law of sines) by the
edge lengths `. Any discrete surface (M, `) satisfying Equation (5.4) at each edge is
called intrinsic Delaunay.

Every polyhedral cone metric admits a Delaunay triangulation, i.e., given a
surface M with cone metric g, there always exists at least one triangulation of
the cone points (vertices) where all edges satisfy Equation (5.4) [ILTC01]. In an
extrinsic setting, one can imagine that a given polyhedron in R3 is triangulated
by different collections of geodesic arcs terminating at vertices—not necessarily
corresponding to the extrinsic edges (see especially Figure 15, right). Each such
triangulation defines a discrete metric (given by the geodesic edge lengths), and one

Figure 15. A given polyhedron can be triangulated in many
different ways; from an intrinsic point of view it does not matter
whether there is a simplicial embedding into Rn. For instance, the
triangulations depicted at top and bottom both describe the same
cone metric.



CONFORMAL GEOMETRY OF SIMPLICIAL SURFACES 25

Figure 16. Left: an edge is Delaunay if the sum of opposite angles
α, β is no greater than π; “flipping” a non-Delaunay edge always
yields a Delaunay configuration. Right: the angle sum condition
holds with equality if and only if two triangles are cocircular.

such metric will always be Delaunay. A subtlety here is that this triangulation will
not in general be simplicial—instead, one must consider irregular triangulations
where, for example, two edges of the same triangle might be identified. (Such
triangulations can be expressed as ∆-complexes, as discussed in Setion 2).

As long as a Delaunay triangulation has no cocircular pairs of triangles, then
it is also unique [BS07]. In other words, if two adjacent triangles ijk, jil share a
common circumcircle when laid out in the plane, then either triangulation of the
quadrilateral ijkl will satisfy Equation (5.4) with equality (since opposite angles in a
circular quadrilateral always sum to π). In general, replacing one triangulation of a
quad ijkl with the other is referred to as an edge flip. Given an initial triangulation,
an intrinsic Delaunay triangulation can be obtained via a simple algorithm: flip non-
Delaunay edges (in any order) until they all satisfy Equation (5.4); this algorithm
will always terminate in a finite number of flips [BS07].

5.3. Discrete Uniformization. With several key pieces in place, one can now
define a notion of discrete conformal equivalence for polyhedral surfaces with different
combinatorics; this definition in turn leads naturally to a discrete uniformization
theorem. There are two equivalent ways to state this definition, one which appeals
only to Euclidean geometry, and another that makes use of a hyperbolic metric
naturally associated with any Euclidean polyhedron (to be discussed in Part IV):

Definition 5.6. Let (M, `) and (M̃, ˜̀) be Delaunay triangulations of the same
topological surface and with the same vertex set V. These triangulations are
discretely conformally equivalent if either of two equivalent conditions hold:

I. There is a sequence of Delaunay triangulations (M, `) = (M1, `1), . . . , (Mn, `n) =

(M̃, ˜̀) such that each pair of consecutive surfaces has either (i) identical combi-
natorics and equal length cross ratios (i.e., they are related by a rescaling of
edge lengths à la Equation (5.1)), or (ii) different combinatorics but identical
Euclidean metric (i.e., they are related by performing Euclidean edge flips on
pairs of cocircular triangles).

II. The ideal polyhedra associated with (M, `) and (M̃, ˜̀) (as defined in Setion 6.2)
are related by a hyperbolic isometry.

This definition might seem somewhat limited, since at first glance it seems to
apply “only” to Delaunay triangulations. Yet since every Euclidean polyhedron has



26 KEENAN CRANE

a Delaunay triangulation, Definition 5.6 is in fact much more natural than the one
discussed in Setion 5.1: it places emphasis on the geometry of the surface itself,
rather than an arbitrary triangulation that merely sits on top of the surface.

Discrete uniformization then amounts to essentially the same statement as in
the smooth setting: given any (discrete) metric, there is a (discretely) conformally
equivalent one with constant curvature. More precisely, for a given discrete surface
(M, `), there exists a conformally equivalent discrete metric with either constant cone
angle Ωi (Equation (2.1)), or more generally, that achieves some prescribed cone
angle Ω∗i (so long as it satisfies the discrete analogue of Gauss-Bonnet mentioned in
Setion 2). Several closely related versions of discrete uniformization are encapsulated
by the following theorems.

Theorem 5.7 (spherical uniformization). For any closed finite discrete surface
(M, `) of genus zero, there exists a discretely conformally equivalent convex polyhedron
(M̃, ˜̀) inscribed in the unit sphere S2 ⊂ R3.

Theorem 5.8 (Euclidean uniformization). For any closed finite genus-1 discrete
surface (M, `) with vertex set V, there exists a discretely conformally equivalent
surface (M̃, ˜̀) with zero curvature at each vertex, i.e., Ω∗i = 0 for all i ∈ V.

In the hyperbolic case (i.e., for genus g ≥ 2), uniformization must be treated in
a different way, since unlike the spherical case we cannot isometrically embed H2

into R3. Instead we endow our triangulation with a piecewise hyperbolic metric,
this time constructed from ordinary rather than ideal hyperbolic triangles. In this
setting, two discrete metrics `, ˜̀ : E→ R>0 on the same triangulation M = (V,E,F)
are discretely conformally equivalent if they satisfy the relationship

sinh(˜̀
ij/2) = e(ui+uj)/2 sinh(`ij/2)

for each edge ij ∈ E (for further discussion see [BPS15]). The definition of the
cone angle Ωi is unchanged: it is the difference between 2π and the angle sum Θi of
the interior angles at vertex i. (This data also describes a Euclidean polyhedron
inscribed in the hyperboloid model, where the Euclidean length of each edge is
determined by the indefinite inner product 〈x, x〉 := x21 + x22 − x23.) The definition
of conformal equivalence for variable triangulations is then directly analogous to
Definition 5.6, yielding the following uniformization theorem:

Theorem 5.9 (hyperbolic uniformization). For any closed finite discrete surface
(M, `) of genus g ≥ 2 with a piecewise hyperbolic metric, there exists a discretely
conformally equivalent piecewise hyperbolic surface (M̃, ˜̀) with zero curvature at
every vertex (Ωi = 0 for all i ∈ V).

Theorem 5.8 is a special case of a more general uniformization theorem which
guarantees existence of metrics with prescribed cone angles at each vertex:

Theorem 5.10. For any closed finite genus-g discrete surface (M, `) with vertex
set V, and any set of target cone angles Ω∗ : V → (−∞, 2π) satisfying the Gauss-
Bonnet condition ∑

i∈V

Ω∗i = 2π(2− 2g),

there exists a discretely conformally equivalent surface (M̃, ˜̀) with Ω̃i = Ω∗i .
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From the Euclidean point of view, the basic idea behind proving discrete
uniformization is to consider a time-continuous evolution of the discrete metric, akin
to the same smooth Ricci/Yamabe flow discussed in Setion 4.3. This flow was first
studied by Luo in the context of a fixed triangulation [Luo04]. In this setting, the
scale factors u : V→ R evolve according to the flow

(5.5) d
dtui(t) = Ωi(t)− Ω∗i ,

where Ωi(t) is the angle defect corresponding to the current edge lengths ˜̀(t) :=
e(ui(t)+uj(t))/2`ij , and Ω∗i is the (fixed) target curvature. Note that the curvatures
Ω(t) depend on the angles θ, which in turn depend on the rescaled edge lengths
`ij(t) = e(ui(t)+uj(t))/2`ij(0). Differentiating Equation (5.5) with respect to u
reveals that the flow is the gradient flow on a convex energy E(u), whose Hessian is
given explicitly by the cotangent discretization of the Laplace-Beltrami operator
∆ [Luo04]. An explicit form for this energy was first given by Springborn et
al. [SSP08], and will be discussed in Setion 6.4. Due to the convexity of the energy,
the flow yields a uniformizing collection of scale factors u∗ : V→ R in finite time—if
such factors exist. However, for a fixed triangulation the flow may become singular,
i.e., it may reach a point where the edge lengths no longer describe a valid discrete
metric (due to failure of the triangle inequality).

For this reason one must in general define discrete uniformization in terms of
variable triangulations. Here one considers the same evolution of scale factors ui(t)
as in Equation (5.5), but where the corresponding discrete metric ˜̀(t) is always
defined with respect to the intrinsic Delaunay triangulation of the current cone
metric. At certain critical moments (namely, when there is a cocircular pair of
triangles) this triangulation will not be unique, and effectively experiences an edge
flip as the flow continues to evolve. One can continue to think of this flow as a
gradient flow on a piecewise smooth energy whose definition is uniform over Penner
cells, i.e., regions of R|V| over which the intrinsic Delaunay triangulation induced
by the scale factors u : V → R does not change. This energy remains C1 (in fact
C2) everywhere—even at the boundary of such cells [Spr17]. One therefore has a
well-defined gradient flow on a convex energy, and can then show that any discrete
metric (with no special conditions on geometry or combinatorics) will flow to one of
constant curvature in finite time.

The Euclidean case (Theorem 5.8 and Theorem 5.10), was first proven by
Gu et al. [GLSW18]; the hyperbolic case (Theorem 5.9) is implied by a proof
by Fillastre [Fil08] about hyperbolic polyhedra, and was shown more directly
by Gu et al. [GGL+18]. The spherical case (Theorem 5.7) was first shown by
Springborn [Spr17], via a proof that also covers the Euclidean and hyperbolic
cases. None of these proofs consider domains with boundary, nor conditions on
monodromy around noncontractible cycles [CZ17]. In order for a uniformization to
be algorithmically computable, it may also be important (depending on the choice
of algorithm) that the number of edge flips encountered during the flow is finite,
i.e., that the flow passes through only finitely many Penner cells; this fact was
established by Wu [Wu14].

Convergence under mesh refinement of discrete conformal maps to smooth ones
has been studied both numerically and analytically [SWGL15, Büc16, Büc18a]
(see also [SC17, Figure 16]), though many questions still remain.
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Figure 17. Left: an ideal triangle in two models of the hyperbolic
plane H2, which preserve either straight lines (Klein) or angles
(Poincaré). Right: these models are both related to the hyperboloid
model via projections onto the planes t = 0 and t = 1 (resp.).

6. Part IV: Hyperbolic Polyhedra

In this final part we consider the hyperbolic viewpoint on discrete conformal
geometry, which helps to simplify and unify the story. Along the way we will also
encounter some fascinating connections between geometry and combinatorics, which
instigated the development of techniques now used for discrete conformal geometry.

Why is hyperbolic geometry an effec-
tive framework for problems in discrete
conformal geometry? For one thing, ideal
hyperbolic polyhedra are often “easier” to
construct than Euclidean ones, since they
typically exhibit greater rigidity. For in-
stance, the dihedral angles of a convex
polyhedron do not determine its extrinsic
geometry in the Euclidean case (consider, for instance, a family of truncated poly-
hedra), whereas convex hyperbolic polyhedra are essentially determined by their
dihedral angles [HR93]. Moreover, even though Alexandrov’s theorem guarantees
that a convex Euclidean polyhedron is uniquely determined by its metric (up to rigid
motions), actually constructing an embedding is quite challenging [IBI08, KPD09].
In contrast, an embedding of an ideal convex hyperbolic polyhedron with prescribed
metric can be obtained as the minimizer of a convex energy [Spr17]. These two
realization problems—ideal polyhedra with prescribed dihedral angles or prescribed
metric—turn out to be closely connected (and in some cases, identical) to the
problem of finding circle patterns with prescribed intersection angles, or discretely
conformally equivalent metrics with prescribed cone angles, resp.

In order to describe these connections, we first give some background on hy-
perbolic geometry, followed by a discussion of variational principles for hyperbolic
polyhedra and their connection to discrete conformal maps.

6.1. Hyperbolic Geometry. The hyperbolic plane H2 is topologically like
the ordinary Euclidean plane, but has “saddle-like” geometry everywhere; more
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formally, it is a complete and simply-connected surface of constant negative curvature
K = −1. Unlike the unit 2-sphere (K = +1), the hyperbolic plane cannot be
isometrically embedded in R3 and must instead be studied in terms of various
models. Two models that naturally arise in discrete conformal geometry are the
Poincaré disk model and the Klein disk model, which both model H2 on the open
unit disk D2 ⊂ R2, as depicted in Figure 17, left. The most salient geometric
facts about these two models is that the Poincaré model is conformal and hence
faithfully represents angles but not straight lines (geodesics), whereas the Klein
model faithfully represents geodesics as straight lines but does not preserve angles.
In the Poincaré model, geodesics instead become circular arcs orthogonal to the unit
circle ∂D2. These two models can be connected via a third hyperboloid model, which
puts H2 into correspondence with one sheet of the hyperboloid x2 + y2 − t2 = −1;
in this model, geodesics are represented as intersections of the hyperboloid with
planes through the origin. If we express points on the hyperboloid in homogeneous
coordinates (x, y, t), then the map from the hyperboloid to the Klein model is given
by the usual homogeneous projection (x, y, t) 7→ (x/t, y/t). Similarly, to get from the
hyperboloid model to the Poincaré model we can simply shift the hyperboloid a unit
distance along the t-axis before applying the same projection. These relationships
are depicted in Figure 17, right.

Unlike the Euclidean plane, where a pair of parallel lines remains at a constant
distance, one can construct pairs of hyperbolic geodesics that never intersect yet
become arbitrarily close as they approach infinity (such pairs are sometimes called
limiting parallels). An ideal hyperbolic triangle is a figure bounded by three such
pairs; its vertices are the three corresponding limit points on the sphere at infinity.
As a result, all interior angles are zero and all edges have infinite length. In fact, all
ideal triangles are congruent, i.e., they are identical up to isometries of H2, which are
represented in the Poincaré model and the Klein model as Möbius transformations
and projective transformations (resp.) that map the disk to itself.

6.2. Ideal Hyperbolic Polyhedra. Any Euclidean triangulation can natu-
rally be identified with one made of ideal hyperbolic triangles: take each triangle
and draw it in the Euclidean plane. The circumcircle of this triangle (i.e., the
unique circle passing through its three vertices) can be viewed as a copy of the
hyperbolic plane in the Klein model. The three straight edges then correspond
to three hyperbolic geodesics, and the triangle itself becomes an ideal hyperbolic
triangle. By gluing these ideal triangles together along shared edges, we obtain an
ideal hyperbolic polyhedron, i.e., a surface of constant curvature K = 1 away from
a collection of cusps at vertices, which extend to infinity (examples are shown in
Figure 18 and Figure 22).

Since all ideal triangles are congruent, it would be easy to think that the
geometry of such a polyhedron is determined purely by the combinatorics of M.
However, additional structure is encoded in the way pairs of ideal triangles are
identified: given two ideal triangles ijk, jil sharing an edge γ, we can apply a
hyperbolic isometry to one of them (say, jil) that fixes γ, i.e., we can “slide” one
ideal triangle along the other. The intrinsic geometry of the hyperbolic polyhedron
is therefore fully determined by (i) the combinatorics of the triangulation, and (ii)
data that specifies how edges are identified.
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Figure 18. A Euclidean polyhedron and its realization as an ideal
hyperbolic polyhedron.

To explicitly encode identifications,
Penner [Pen87] defines shear coordinates
σij ∈ R per edge ij ∈ E which measure
the distance between the altitudes of the
two triangles with base ij, as depicted in
the inset. (Note that these distances are
measured with respect to the hyperbolic
metric, and have nothing to do with a
particular model or choice of coordinates
on H2.) Alternatively, one can “decorate”
the vertices of the ideal polyhedron with
arbitrarily-chosen horocycles, which are
copies of Euclidean Rn sitting inside Hn.
Just as a Euclidean line can be viewed as
a circle of infinite radius, a horocycle can
be viewed as the limit of a family of mutually tangent hyperbolic circles as the
radius goes to infinity—in the Poincaré model, any such curve is represented by a
circle tangent to the boundary. For a triangle ijk, the horocycle associated with
a given vertex i will meet the two hyperbolic geodesics corresponding to edges ij
and ik orthogonally. The Penner coordinate λij ∈ R of each edge ij is then the
(hyperbolic) distance between the horocycles at i and j. More precisely, λij gives
the signed distance between horocycles: positive if they are disjoint, negative if
they intersect. Since the choice of horocycles is arbitrary, the Penner coordinate of
a single edge does not, in isolation, provide any geometric information about the
hyperbolic structure of the polyhedron. However, the Penner coordinates share an
important relationship with the shear coordinates, namely

(6.1) 2σij = λjk − λik + λil − λjl.
Hence, two sets of Penner coordinates determine the same ideal hyperbolic polyhe-
dron if and only if they induce the same shear coordinates.
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Figure 19. Unlike the octahedron (left), the stellated octahedron
(right) cannot be realized a convex spherical polyhedron, no matter
where the vertices are placed.

The similarity between Equation (6.1) and the definition of the length cross
ratio (Equation (5.3)) is not superficial: when an ideal hyperbolic polyhedron is
constructed from a Euclidean polyhedron (as described above), the shear coordinates
and length cross ratios will be related by

σij = log(cij),

independent of any choice of horocycles. It is therefore natural to pick horocycles
such that

λij = 2 log `ij ,

i.e., such that the Penner coordinates encode the edge lengths. From the conformal
point of view, the shear coordinates encode the discrete conformal equivalence class,
and the Penner coordinates specify a particular discrete metric within this class.

Importantly, since both the shear coordinates and Penner coordinates are
hyperbolic distances, they will be preserved by hyperbolic isometries. Hence,
isometry classes of ideal hyperbolic polyhedra correspond to conformal equivalence
classes of discrete metrics. This basic viewpoint was introduced by Bobenko, Pinkall,
and Springborn; see in particular [BPS15, Section 5] for further discussion.

6.3. Variational Principles. A variational principle expresses the solution
to a problem as a minimizer of an energy functional (possibly subject to constraints).
A major appeal of discrete conformal geometry is that the variational principles
involved are often convex, providing a clear picture of existence and uniqueness,
and allowing one to leverage principled methods from convex optimization [BV04]
to develop practical algorithms with clear guarantees. Much of the understanding
of these principles originated in the hyperbolic setting, where they can be given a
concrete geometric interpretation. Here, the basic question is not how to uniformize
a Euclidean polyhedron, but rather how to construct embeddings of hyperbolic
polyhedra with prescribed geometric data—namely, dihedral angles or the intrinsic
metric.
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A Prelude: Steiner’s Problem. Why is anything known about hyperbolic poly-
hedra in the first place? One answer is that triangulations of hyperbolic space are a
key tool for understanding the geometry and topology of 3-manifolds [Thu98]. A
more basic question was posed by the 19th century Swiss geometer Jakob Steiner,
which provides a first glimpse at some of the deep connections between geometry
and combinatorics:

“Wenn irgend ein convexes Polyëder gegeben ist, läßt sich dann
immer (oder in welchen Fällen nur) irgend ein anderes, welches
mit ihm in Hinsicht der Art und der Zusammensetzung der
Grenzflächen übereinstimmt (oder von gleicher Gattung ist), in
oder um eine Kugelfläche, oder in oder um irgend eine andere
Fläche zweiten Grades beschreiben (d. h. daß seine Ecken alle in
dieser Fläche liegen, oder seine Grenzflächen alle diese Fläche
berühren)?”

In English: “Given a convex polyhedron, when can you find a combinatorially
equivalent convex polyhedron that is inscribed in the sphere (or another quadratic
surface)?” More abstractly, we might ask: which combinatorial tessellations of the
2-sphere can be realized as convex polyhedra with vertices on the sphere? Steiner’s
question is very much in the spirit of discrete differential geometry: he is looking for
a finite analogue of the sphere that exactly preserves a key property of its smooth
counterpart (convexity).

Surprisingly enough, not all tessellations of the sphere can be realized as convex
spherical polyhedra: for instance the octahedron sits in the sphere, but for the
stellated octahedron (where we split each face into three) there turns out to be no way
to arrange the vertices on the sphere so that it becomes convex [Riv93, Corollary
10]. In other words, only certain “nice” combinatorial tessellations of the topological
sphere can be interpreted as geometric spheres. This same question can also be stated
in terms of Delaunay triangulations: every planar Delaunay triangulation is the
image of some sphere-inscribed convex polyhedron under stereographic projection.
Hence, Steiner’s question amounts to asking which combinatorial triangulations can
be realized as planar Delaunay triangulations.

More than 150 years later, a general solution to Steiner’s problem was found by
framing it as a problem about hyperbolic rather than Euclidean polyhedra [Riv96].
The bridge is the one we have already seen (in Setion 6.2): Euclidean polyhedra
determine a hyperbolic structure by interpreting each Euclidean triangle as an
ideal triangle in the Klein model; constructing a convex sphere-inscribed Euclidean
polyhedron with prescribed combinatorics then becomes equivalent to finding a
convex ideal hyperbolic polyhedron with the same combinatorics. As we will see,
this problem turns out to be closely linked to the variational principles for both the
circle patterns studied in Part II, and the conformally equivalent discrete metrics
studied in Part III.

Lobachevsky’s Function. Perhaps the most concrete link between hyperbolic
and discrete conformal geometry is through the Lobachevsky function

Л(θ) := −
∫ θ

0

log |2 sinu| du,

Thurston provides an account of some of its analytical and geometric proper-
ties [Thu79, Chapter 7]. Though originally developed for calculating hyperbolic
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Figure 20. Any Euclidean triangle ijk with interior angles θ
can be identified with an ideal hyperbolic tetrahedron ijkl with
identical dihedral angles. The logarithmic edge lengths λij =
2 log `ij determine a choice of horospheres at vertices.

volumes, this function also arises naturally in variational principles for discrete
conformal maps.

In particular, consider an ideal hyperbolic tetrahedron, i.e., an ideal hyperbolic
polyhedron with the usual combinatorics of a tetrahedron. One can show that the
volume of such a tetrahedron is

V (α) := 1
2

∑
ij

Л(αij),

where the sum is taken over all six edges, and αij is the dihedral angle associated with
edge ij (for a proof, see [Thu79, Theorem 7.2.1]). Since opposite dihedral angles
in an ideal tetrahedron are equal, only three of the dihedral angles are distinct.
Moreover, these angles, which we will call αij , αjk, and αki, can be naturally
identified with the interior angles θijk , θ

jk
i , θ

ki
j of a Euclidean triangle (resp.), as

depicted in Figure 20. Importantly, then, the function −V is convex when restricted
to the set of valid Euclidean angles, i.e., whenever αij + αjk + αki = π and all
the angles are positive [Riv94, Theorem 2.1]. The first order change in volume V̇
with respect to a first order change α̇ in dihedral angles can be expressed via the
following Schläfli formula for ideal tetrahedra:

(6.2) V̇ = −1

2

∑
ij

λijα̇ij ,

where λij are the Penner coordinates of edge ij [Mil94]; Rivin provides a proof [Riv94,
Theorem 14.5].
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Figure 21. In the Poincaré halfspace model for H3, two Euclidean
circles intersecting at an angle Φij can be interpreted as two copies of
H2 intersecting at the same dihedral angle. Three such intersections
trace out an ideal hyperbolic triangle.

Such observations provide a starting point for convex variational principles
for hyperbolic polyhedra [HR93, Riv93, Riv96, Fil08], which in turn provide
variational principles for discrete conformal geometry. Consider, for instance, a
Euclidean circle pattern associated with the faces of a triangulation M, where circles
associated with neighboring triangles ijk, jil intersect at angles Φij [BS04a]. If we
view each circle as the boundary of a hemisphere sitting on top of the plane, then the
intersection angles coincide with the dihedral angles between neighboring spheres.
In the Poincaré half space model for H3, each such hemisphere corresponds to a copy
of H2. The intersections between spheres are then hyperbolic geodesics bounding
ideal hyperbolic triangles. Hence, circle patterns with prescribed intersection angles
are equivalent to convex ideal polyhedra with prescribed dihedral angles, which are
in turn equivalent to convex Euclidean polyhedra inscribed in the sphere (via the
Klein model, as discussed in Setion 6.2), which are in turn equivalent to planar
Delaunay triangulations, via stereographic projection. The connections between
these different points of view are summarized in Figure 22.

Alternatively, suppose we draw an ideal tetrahedron in the Poincaré half space
model, as depicted in Figure 20. Then the three distinct dihedral angles αij
correspond to the three interior angles of a Euclidean triangle (at infinity), and
we can always pick horospheres at vertices such that the Penner coordinates λij
are determined by the logarithmic edge lengths, i.e., such that `ij = eλij/2. By
Equation (6.2), the first order variation of the function

(6.3) ϕ(α, x) := V (α) +
∑
ij

λijαij

is then given by

ϕ̇ = V̇ +
∑
ij

λ̇ijαij +
∑
ij

λijα̇ij =
∑
ij

λ̇ijαij .

Hence,
∂ϕ

∂λij
= αij ,

allowing us to obtain the interior angles of a triangle as the derivatives of a convex
functional ϕ (see also [BPS15, Section 4.2]). This functional therefore provides
a starting point for variational principles for problems involving an evolution of a
discrete metric ` = eλ/2. In particular, it leads to a variational principle for discrete



CONFORMAL GEOMETRY OF SIMPLICIAL SURFACES 35

Figure 22. A triangulation with fixed combinatorics can be real-
ized as a Delaunay triangulation in the plane if and only if it can
also be realized as a convex Euclidean polyhedron inscribed in the
sphere, a convex ideal hyperbolic triangulation, and a circle pattern
on the sphere (with circles associated with triangles).

uniformization involving the cone angles Ωi (Setion 6.4), which can be expressed in
terms of sums of interior angles θ, or equivalently, dihedral angles α.

Chronologically, the presentation in this section is backwards: variational princi-
ples in discrete conformal geometry were historically developed by first establishing
some kind of “flow” involving only derivatives (such as the combinatorial Ricci
flow discussed in Setion 4.3); only later were these derivatives integrated to obtain
explicit expressions for the underlying variational principle, i.e., the energy driv-
ing the flow. While derivatives alone are often enough to establish results about
existence, uniqueness, convergence, etc., variational principles are quite valuable
for understanding the global picture (including connections between Euclidean and
hyperbolic problems) as well as for practical algorithms (enabling, for instance, the
use of principled optimization strategies [KSS06, SSP08]).

Circle Patterns. Early approaches to constructing circle packings can be loosely
interpreted as iterative algorithms (e.g., Jacobi or Gauss-Seidel) for minimizing
an energy [Thu79, CS03]. Colin de Verdière [Col91] gave the first real varia-
tional principle for Euclidean and hyperbolic circle patterns with circles at vertices,
though only expressions for the derivatives were given; Brägger [Bra92] makes
a very brief remark that these derivatives appear related to hyperbolic volume
(“Untersucht man diese Funktionale, stösst man rasch auf die Lobachevsky-Funktion
und damit auf das Volumen hyperbolischer 3-Simplices.”). Rivin [Riv94] considers
ideal polyhedra with prescribed dihedral angles, effectively providing a variational
principle for Euclidean circle patterns. Bobenko & Springborn [BS04a] develop
variational principles that connect and generalize the three previously mentioned,
and leads to efficient numerical implementation [KSS06] due to the absence of
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difficult constraints. Chow and Luo [CL03] subsequently introduce a combinatorial
analogue of Ricci flow (Setion 4.3), and show that it arises from a convex variational
principle by considering the Hessian [CL03, Section 3.5]. More recently, Ge also
considers a combinatorial analogue of Calabi flow [Ge18] suitable for practical
computation [ZLH+18]. A variety of closely related variational principles and
generalizations thereof have also been studied [Gli11, ZGZ+14, GX15], including
a large number of applications [JKG07].

Conformally Equivalent Discrete Metrics. The first connection between varia-
tional principles and conformally equivalent discrete metrics (à la Definition 5.1)
came from Roček and Williams’ efforts to study quantum gravity through the
simplicial calculus of Regge [Reg61]. The definition of discrete conformal equiv-
alence here is identical to the one discussed in Setion 5.1 [RW84, Section VII],
though the discrete variational principles are mainly connected to Einstein metrics
on four dimensional spacetime rather than metrics of constant scalar curvature on
2-manifolds. Luo [Luo04] later developed the same notion of conformally equivalent
discrete metrics, and a corresponding discrete Yamabe flow driving the metric toward
constant scalar curvature; no explicit energy was given, and existence is guaranteed
only if the flow does not develop singularities (i.e., if the discrete metric does not
degenerate). Springborn, Schröder, and Pinkall gave an explicit energy in terms of
the Lobachevsky function [SSP08], and Bobenko, Pinkall, and Springborn [BPS15]
made the connection to hyperbolic geometry and ideal polyhedra. Through this
correspondence, Fillastre effectively proved discrete uniformization in the hyperbolic
case [Fil08]; Gu et al.establish the same result from the perspective of discrete
conformal equivalence [GGL+18, Corollary 4 and Theorem 5]. Gu et al. also estab-
lish the existence of discrete uniformization in the Euclidean setting [GLSW18];
Springborn completes the proof of discrete uniformization via a variational approach
that subsumes the Euclidean, hyperbolic, and spherical case [Spr17].

Much more has been said about variational principles both for ideal hyperbolic
polyhedra, and for polyhedra in general—see for instance [BS04a, DGL08].

6.4. Variational Principle for Discrete Uniformization. The hyperbolic
picture provides an attractive perspective on the discrete uniformization theorems
discussed in Setion 5.3. Recall that two Euclidean polyhedra are discretely con-
formally equivalent if and only if their Delaunay triangulations induce the same
piecewise hyperbolic metric (Definition 5.6). Intuitively, the reason for using a
canonical triangulation like the intrinsic Delaunay triangulation is that different
triangulations of the same Euclidean polyhedron will in general induce a different
hyperbolic metric. The Delaunay triangulation is particularly special because Eu-
clidean and hyperbolic Delaunay flips coincide exactly when the triangulation is not
unique, i.e., when two adjacent triangles are cocircular. Consider for instance two
triangles ijk, jil ∈ F, realized as a pair of ideal hyperbolic triangles in the Klein
model. In this setting, the new edge length `kl resulting from a flip is determined
by Ptolemy’s relation:

(6.4) `ij`kl = `ki`lj + `il`jk.

Such a flip is therefore called a Ptolemy flip, and preserves the hyperbolic structure
of M, i.e., the new and old hyperbolic metric are the same. However, the new and
old Euclidean metric will be different except in the special case where ijk and jil
have the same circumcircle, since in this case the new edge length `kl resulting
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from a Euclidean flip or a Ptolemy flip will be identical. This fact is somewhat
counterintuitive: it says that even for a completely flat domain, a Euclidean edge
flip will (in general) change the discrete conformal structure—even though it does
not change the Euclidean geometry. Much as a Euclidean edge flip preserves the
metric only if the edge is flat (i.e., has zero dihedral angle), a hyperbolic edge
flip will preserve the metric only if the hyperbolic edge has zero dihedral angle, or
equivalently, if the four vertices are cocyclic. The Delaunay condition is therefore
essential for the equivalence of definitions (I) and (II): since all meshes in the
sequence are Delaunay, any Euclidean edge flip will also correspond to a Ptolemy
flip (and hence preserve the hyperbolic metric). Alternatively one could also say:
two triangulations are discretely conformally equivalent if they are related by a
sequence of length scalings (à la Equation (5.1)) and Ptolemy flips, in which case
the intermediate triangulations are no longer required to be Delaunay.

The problem of finding a discretely conformally equivalent flat metric (i.e., all
cone angles equal to zero) is then the same as finding an ideal polyhedron in H3 with
prescribed hyperbolic metric. Both problems can be solved by considering the same
variational principle, which is discussed at length in a sequence of papers [SSP08,
BPS15, Spr17]. In particular, let ` be an initial discrete metric on a triangulation
M, and for any conformally equivalent metric ˜̀ with scale factors u at vertices,
define the following energy with respect to the intrinsic Delaunay triangulation of ˜̀:

E(u) :=
∑
ijk∈F

ϕ(λ̃ij , λ̃jk, λ̃ki)−
π

2
(ui + uj + uk) +

1

2

∑
i∈V

(2π − Ω∗i )ui.

Here, ϕ is the potential given in Equation (6.3), λ̃ij = 2 log(˜̀
ij) are the logarithmic

edge lengths, and Ω∗ are the target cone angles [SSP08]. One can show that this
energy is convex, and in fact C2 everywhere [Spr17]. To uniformize a given discrete
metric over a Euclidean domain (possibly with cone singularities), one can therefore
apply standard first- or second-order descent to E with respect to the log conformal
factors u; the energy simply needs to be expressed relative to the appropriate intrinsic
Delaunay triangulation, which can always be obtained by applying a sequence of
Ptolemy flips. This principle (and variations of it) provide one approach to proving
the discrete uniformization theorems discussed in Setion 5.3 [Spr17].

7. Summary

The table below summarizes several different approaches to the discretization
of conformal maps. To date, the approach based on conformally equivalent discrete
metrics appears to be the only one that clearly exhibits both the right amount of
flexibility, and furnishes a complete discrete uniformization theorem. However, the
perspective of circle preservation comes very close—and ultimately it should not be
too surprising to also find a complete picture of discrete uniformization in terms of
circles. In fact, although these two perspectives at first appear somewhat disjoint,
connections continue to be found at various levels. For instance, Glickenstein [Gli11]
and Bücking [Büc18b] discuss connections between circle patterns and length cross
ratios; Lam and Pinkall [LP16] show that linearized versions of both theories can
be connected to discrete harmonic functions (in the sense of Equation (3.4)). More
elementary starting points, natural as they may seem, lead to definitions that turn
out to be too rigid or too flexible. However, as noted in Setion 1 and discussed
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throughout, many of these discretizations nonetheless provide interesting connections
to the smooth theory, and play an important role in practical algorithms.

Beyond the basic question of flattening/uniformization, many questions about
how to discretize conformal geometry remain. For instance, questions about extrinsic
conformal maps, i.e., transformations of conformal surface immersions in Rn, are
relevant for practical tasks in digital geometry processing, where one wishes to
directly manipulate geometry sitting in space, rather than mapping it to a canonical
domain. Some preliminary work has been done in this direction [Cra13], including
a recent theory compatible with the notion of conformally equivalent discrete
metrics [LP18]. There has also been some recent work on applying similar tools to
the problem of discrete geometrization [AMY18], as well as continued interest in
problems in numerical relativity [Gen02] via Regge calculus.

Approach Data Outcome Comments
Angles

(Setion 3.1) interior angles θjki too rigid similarity of triangles forces
single global scale factor

Dirichlet
(Setion 3.3) vertex coordinates fi too rigid (same as Angles)

Hodge
(Setion 3.4) length ratio wij too rigid uniquely determines a discrete

metric
Conjugate
(Setion 3.5) vertex coordinates fi just right only under refinement / no fi-

nite notion of conformal equiv-
alence

Circles
(Setion 4) graph G = (V,E) too flexible only combinatorics are consid-

ered; no way to distinguish dif-
ferent metrics

intersection angles αij just right existence not guaranteed for
all triangulations

Metric
(Setion 5) edge lengths `ij just right existence is guaranteed
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