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Abstract. Piecewise-linear triangle meshes are widely popular for surface representation in the digital com-
puter; mappings of meshes are therefore central for applications such as computing good coordinate systems on

surfaces (parameterization), finding correspondence between shapes, and physical simulation. However, repre-

sentation and calculation of mappings in a computer pose several challenges: (i) how to define faithful discrete
analogous of properties of smooth mappings (e.g., angle or area preservation), (ii) how to guarantee properties

such as injectivity and/or surjectivity, and (iii) how to construct mappings between non-Euclidean (curved)
domains. One particularly interesting sub-class of simplicial mappings is the collection of convex combination

mappings, in which the image of each vertex of the triangulation is restricted to the convex-hull of its immediate

neighbors’ images. Convex combination mappings can guarantee injectivity, are simple to compute algorith-
mically, offer a discrete analog to harmonic mappings, and can be used to approximate conformal mappings.

This lecture provides an introduction to convex combination mappings and their generalizations, as well as their

algorithmic aspects and practical applications.

1. Triangulations and discrete mappings.

Surfaces in a computer are often represented or approximated by triangulations M = (V,E, F ), where
V = {vi} ⊂ Rd (typically d = 2, 3) is the vertex set, E = {eij} the edge set, and F = {fijk} the face set.
Edges are convex-hulls of pairs of points, eij = hull {vi, vj}, and faces are convex-hulls of triplets of points
fijk = hull {vi, vj , vk}. M is a simplicial complex, meaning that:

(i) The intersection of any two faces is either an edge, a vertex or an empty set; the intersection of any two
edges is either a vertex or empty.

(ii) All edges of a triangle are in E; all vertices of an edge are in V .

Note that a triangulation M is not necessarily a topological surface (i.e., each point has a neighborhood homeo-
morphic to a disk), as shown for example in Figure 1(a). To assure a triangulation is indeed a topological surface
we add the requirement that

(iii) The link of each vertex is a simple closed polygon.

The link of a vertex vi is the union of all edges ejk that do not contain vi but share a triangle fijk with it,
namely

link(vi) =
⋃

{ejk | fijk∈F}

ejk.

Definition 1. A surface triangulation is a triangulation M = (V,E, F ) satisfying (i)-(iii).

For example, Figure 1(a)-left is not a surface triangulation since the link of the middle vertex consists of
two closed polygonal loop; the right example is not a surface since the link of a vertex at any of the two ends of
the center edge contains a subset of edges homeomorphic to the symbol Y.

To allow for surface triangulations with boundary we relax Condition (iii):

(iii’) The link of each vertex is a simple closed polygon or a simple polygonal arc.

Definition 2. A triangulation of a surface with a boundary is a triangulation M = (V,E, F ) satisfying
(i)-(ii) and (iii’).
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(a) (b) (c)

Figure 1. (a) Non manifold triangulations; (b) a cone (left) and a sector (right); (c) Euclidean
cone surfaces: convex polygonal region (left), Euclidean orbifolds (middle, right).

The boundary of a surface triangulation M is a one-dimensional simplicial complex, that is a polygonal
curve. It consists of all edges with only one adjacent face and all vertices whose link is a polygonal arc. We
denote it by MB = (VB , EB). The interior vertex set is denoted VI = V \ VB . Note that in general, in contrast
to our intuition from the continuous case, not every boundary vertex has an interior vertex as a neighbor; e.g.,
stitch a triangle to the boundary of a disk-type mesh and consider its dangling vertex.

A surface triangulation M = (V,E, F ) is connected if its underlying graph V = (V,E) is connected. It is 3-
connected if it cannot be disconnected by removing any two vertices. If M is a boundaryless surface triangulation
it is automatically 3-connected. If M is disk-type and 3-connected the relation of boundary vertices VB to interior
vertices BI is similar to the continuous case: every boundary vertex has an interior vertex neighbor (if interior
vertices exist). In fact, a stronger claim holds in the 3-connected case [Flo03a]: any interior vertex vi can be
connected to any other vertex v by a path P = [vi, v1, v2, . . . , vk, v] of interior vertices vj ∈ VI , 1 ≤ j ≤ k.

We want to discuss mappings of surface triangulations. The most natural class of mappings of a triangulation
consists of simplicial maps:

Definition 3. A simplicial map f : M → Rd is a continuous piecewise-linear mapping defined as the unique
piecewise-linear extension of a vertex map taking vertices vi ∈ V to ui ∈ Rd. By linear extension we mean that
every point in the interior of some simplex σ (edge or face) x =

∑
i λivi, where λi ≥ 0,

∑
i λi = 1, and vi are

the vertices of σ, is mapped to f(x) =
∑
i λiui.

A guiding problem for us is:

Problem 1. Given two topologically equivalent surfaces1 M1, M2, compute a simplicial homeomorphism
f : M1 → M2. We would like this homeomorphism to have some minimal distortion property and potentially
interpolate given point data {(xi, yi)}i∈I ⊂M1 ×M2.

Unfortunately, directly computing a homeomorphic simplicial map M1 → M2 is in general a non-convex
and difficult problem. We will tackle this problem by considering a canonical (topologically equivalent) domain
N and show how to compute simplicial homeomorphisms f1 : M1 → N and f2 : M2 → N . We then define
f = f−12 ◦ f1 : M1 → M2. The canonical surface N will be chosen from a particular family of special surfaces
F = {N} we will consider in this chapter.

2. Convex combination mappings.

Our goal is to build a simplicial homeomorphism M → N onto a member surface of a special family of
surfaces F = {N}. Building the homeomorphism M → N will be accomplished by solving a system of sparse
linear equations. The method of constructing this simplicial map is called convex combination mapping. It
originated in [Tut63] and was generalized and given this name in [Flo97, Flo03a, RG06]. These works
allowed homeomorphic simplicial mappings of topological disks onto convex polygonal regions. In [Lov04,
SF04, GGT06] the embedding was generalized to the topological torus. In [GGT06] sufficient conditions for
non-convex, as well as multiply connected domains were formulated. In [AL15], the construction was generalized
to the collection of Euclidean orbifolds (which contains the torus as a particular case). The following is based
mostly on the above papers.
F will soon be defined as a certain collection of Euclidean cone surfaces.

Definition 4. A compact oriented surface N is a Euclidean cone surface if it is a metric space locally
isometric to an open disk, a cone, or a sector, and the number of cone points is finite.

1Two surfaces are topologically equivalent if there exists a homeomorphism between them. Intuitively, the surfaces can be

stretched onto one another without the need to tear the surfaces.
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Figure 2. All types of fundamental domains; rigid motion identifications of edges are depicted
with arrows.

A cone and a sector are shown in Figure 1(b). For each point x ∈ N we define the angle θ(x) to be the
angle sum at the point x. Interior points have θ(x) = 2π and boundary points θ(x) = π. An interior point is
a cone point if θ(x) 6= 2π. A boundary point is a cone point if θ(x) 6= π. We will consider a specific family of
Euclidean cone surfaces:

F = {N | N is a convex polygonal domain or a Euclidean orbifold} .

A convex polygonal domain is shown in Figure 1(c), left. Figure 1(c), right, shows three examples of Euclidean
orbifolds: two topological spheres and a topological disk. Euclidean orbifolds is a specific family of Euclidean
cone surfaces defined by taking the quotient of the plane R2 w.r.t. a wallpaper symmetry group of the plane,
G, i.e., R2/G. Put differently, a symmetry group G defines an equivalence relation u ∼ w iff u = g(w) for some
g ∈ G. Taking the quotient topology w.r.t. such an equivalence relation leads to a surface N where the orbits
of G, namely [u] = {g(u) | g ∈ G}, are identified as points. The orbifolds are in one-to-one correspondence with
the 17 wallpaper groups. Euclidean orbifolds are characterized by their topological type, and number, order and
types of cones. There are two types of cones: reflective (where the surface is locally isometric to a sector, see
Figure 1(b), right), and rotational (where the surface is locally isometric to a cone, see Figure 1(b), left). The
order of a cone point x is 2π/θ(x) for rotational and π/θ(x) for reflectional cones. Figure 3 lists all Euclidean
orbifolds using the so-called orbifold notation [CBGS08]. Figure 1(c) shows (2222), (244), and (∗244) orbifolds,
respectively.

Each Euclidean orbifold has a (non-unique) fundamental domain, namely a domain that represents a con-
nected choice of a representative per orbit. As fundamental domains we use (closed) disk-type polygonal domains
Ω defined by a closed convex polygonal curve [p1, p2, . . . , pm] together with a list of identifications of pairs of edges
[pi, pi+1]↔ [pj , pj+1] by rigid motions g ∈ G, i.e., g([pi, pi+1]) = [pj , pj+1]. Note that these rigid identifications
g also generate G. Pairs of different edges are identified with rotations, translations, or glides (a composition
of a reflection and translation along a line), while self identified edges are identified with reflections. Figure 2
shows all fundamental domains where the identification are visualized by arrows. Arrows between different edges
include rotations, translations, and glides (slanted arrows); self arrows indicate reflection across the infinite line
supporting the edge. The edge identification implies an equivalence relation in Ω×Ω where identified points are
in the same equivalence class. Once we quotient Ω by this relation (i.e., the edges of Ω are stitched together)
we achieve the orbifold N . For convex polygonal domains we denote Ω = N with all edges self-identified (right
column in Figure 2).
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topology cones

sphere (236), (244), (333), (2222)
disk (∗236), (∗244), (∗333), (∗2222), (2 ∗ 22), (3 ∗ 3), (4 ∗ 2), (22∗)

projective plane (22x)
torus (o)

Klein bottle (xx)
annulus (∗∗)

Möbius band (∗x)

Figure 3. The types of Euclidean orbifolds. On left to ∗ (or without any ∗) are rotational cone
orders; on the right to ∗ reflective cone orders.

We will build a simplicial mapping f : M → N called a convex combination mapping. This is done by
assigning a positive weight, ωij > 0, to each edge eij ∈ E.

Definition 5. A convex combination mapping f : M → R2 is a simplicial map, mapping each interior
vertex vi ∈ VI to a planar point ui ∈ R2 so that

(1)
∑
j∈Ni

ωij(uj − ui) = 0,

where Ni = {j | eij ∈ E} is the neighbor index set of vi. Geometrically, ui is strictly inside the convex-hull
defined by its immediate neighbors.

An important property of convex combination mappings is the discrete maximum principle. It is useful
to formulate it in the functional setting: Let h : M → R satisfy the convex combination property (1) at each
interior vertex VI . That is, to each vertex vi ∈ M one associates a scalar hi ∈ R and these scalars satisfy (1)
for all vi ∈ VI . For example, one can consider the x- or y-coordinate of convex combination mapping. Then, as
proved e.g., in [Flo03a],

Proposition 1. (Discrete maximum principle.) Let h : M → R be a convex combination function, and M
a 3-connected disk-type surface triangulation. Let vi ∈ VI . If hi = minj hj or hi = maxj hj then h is a constant
function. In particular this implies that the maximum and minimum is achieved on the boundary VB. The last
assertion is true also if M is not 3-connected.

Proof. Assume hi = minhj . The convex combination property together with the fact that hi achieves
the minimum imply that its immediate neighbors also equal hi. Using the 3-connectedness we can construct an
interior path to any other vertex, therefore continuing in this manner the proposition is proved. �

Convex combination mappings by themselves are not sufficient for building homeomorphisms. For example,
the trivial (i.e., constant) convex combination mapping ui = u, ∀i always exists. To achieve a homemorphism
certain boundary conditions should be applied. These boundary conditions in essence force the image of the
map, f(M), to cover N . Bijectivity follows from the particular properties of the family of surfaces F and is not
true in general for all Euclidean cone surfaces.

We deal with M that has one of the topological types that appear in F (all possible topological types and
fundamental domains are listed in Figure 3 and depicted in Figure 2). Given a choice of target cone surface
N ∈ F with m cone points, let its fundamental disk domain be denoted by Ω. Choose a simple connected
polygonal path Γ ⊂ V ∪ E passing through at-least m vertices of M , denoted C = {vc1 , vc2 , . . . , vcm} ⊂ V ,
so that M \ Γ is homeomorphic to Ω◦ (i.e., the interior of Ω). Let M ′ = {V ′, E′, F ′} be the triangulation
representing M cut along Γ, where F ′ = F and M ′ is homeomorphic to Ω. Figure 4 shows an example of (from
left to right): triangulations M , M ′, Ω and a target orbifold N .

We will need to relate the vertices, edges, and faces of M ′ and M . For that end we consider the inclusion
map ι : M ′ ↪→ M . The inclusion ι induces an equivalence relation in M ′: x ∼ y ⇐⇒ ι(x) = ι(y). Taking the
quotient of M ′ with this equivalence relation results in M ; this is equivalent to stitching M ′ along Γ to retrieve
back M .

To compute the simplicial homeomorphism f : M → N we consider M ′ and define a simplicial map
s : M ′ → R2 by solving a linear system of equations. The unknowns of the linear system are the target locations
of the vertices in the plane, namely ui = s(vi), vi ∈ V ′; the simplicial map s is the unique piecewise linear

extension of this vertex map. The total degrees of freedom of s are therefore u =
{
u1, u2, . . . , u|V ′|

}
∈ R2×|V ′|.

The linear system consists of three sets of equations:
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Figure 4. A surface triangulation M (left) is cut into M ′ (middle-left) to be homeomorphic
to the fundamental domain Ω (middle-right) of a selected target N (right).

(a) For interior vertices, V ′I , we set the convex combination equation (1), that is, every interior vertex is mapped
strictly inside the convex hull of its immediate neighbors.

(b) For (non-cone) boundary vertices, V ′B \C ′, where C ′ = ι−1(C) ⊂ V ′, we formulate equations preserving the
edge identification rigid motions (see Figure 2), and maintaining the convex combination condition across
the boundary of M ′; Equations (3),(4),(5),(6).

(c) For cone vertices C ′, we restrict their position to the vertices of the fundamental domain Ω,

(2) ui = pi, vi ∈ C ′.
Equations (b) are dependent on the choice of target surface N ∈ F and realize the edge identification in

the fundamental domain. The equivalence relation ∼ induces an equivalence relation in the vertex set, vi ∼ vj
in V ′. The equivalence classes, 〈vi〉 = {vi′ ∈ V ′ | vi′ ∼ vi}, include interior vertices as singletons, and boundary
vertices either as singletons, V ′BS = {〈vi〉 | vi ∈ V ′B , 〈vi〉 = {vi}} (in case the point vi is also boundary of M) or
pairs V ′BP = {〈vi〉 | vi ∈ V ′B , 〈vi〉 = {vi, vi′}} (vi is not a boundary of M). Singleton boundary vertices V ′BS are
aligned by reflections, namely, stay on some infinite line,

(3) aTi ui + bi = 0, ∀ 〈vi〉 ∈ V ′BS ,
where 0 6= ai ∈ R2, bi ∈ R. Pairs of boundary vertices V ′BP are aligned by rotations, translations, or glide-
reflections

(4) ui = rii′ui′ + tii′ , ∀ 〈vi〉 ∈ V ′BP ,
where rii′ ∈ O(2) and tii′ ∈ R2. Note that (3) and (4) do not capture all the degrees of freedom for non-cone
boundary vertices, V ′B \ C ′; there is still one degree of freedom for singleton boundary vertex and two degrees
of freedom for a pair of boundary vertices. These degrees of freedom are used to assure the convex combination
property is preserved across the boundary of M ′:

(5)
∑
j∈Ni

ωij(a
⊥
i )T (uj − ui) = 0, ∀ 〈vi〉 ∈ V ′BS ,

where a⊥i ⊥ai, and

(6)
∑
j∈Ni

ωij(uj − ui) +
∑
j∈Ni′

ωi′jrii′(uj − ui′) = 0, ∀ 〈vi〉 ∈ V ′BP .

We denote the linear system
L = (a) + (b) + (c).

The simplicial map s : M ′ → R2 is defined by the solution of this equation (existence and uniqueness proof
is deferred a bit). The simplicial map s : M ′ → Ω defines a unique map f : M → N by

f(〈x〉) = [s(x)], ∀x ∈M ′.
Remember that 〈x〉 represents a point in M . The map is well defined since pairs y, z ∈ 〈x〉 are in M ′B (i.e.,
the boundary of M ′) and are mapped, due to the boundary conditions (3), (4), to points f(y), f(z) in the same
orbit of G, that is, [f(y)] = [f(z)].

An instrumental part of the analysis of the map s (and consequently f) is to use a tiling (i.e., branched
cover) mesh M ′′ constructed from M ′ as follows. Use the transformations of the symmetry group G as defined
in (3)-(4) and stitch s(M ′) to itself along boundaries to create an infinite triangulation in the plane (with no
boundary); call this triangulation M ′′ and the image of each vertex vi ∈ V ′′ is denoted, as before, ui ∈ R2. We
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(a) (b)

Figure 5. (a) shows convex combination homeomorphism of surface triangulations to differ-
ent sphere-type orbifolds (from top-left): (244), (236), (333), and (2222). (b) shows convex
homeomorphism to a convex polygonal domain (two left columns) and to a sphere-type (244)
orbifold; bottom row shows blow-ups of the image. Note that the orbifold map is approximately
conformal. Images taken from [AL15].

will keep denoting this simplicial map s and the mesh embedding in the plane s(M ′′). Note that s : M ′′ → R2

satisfies the convex combination property at all vertices. Indeed, it is clearly so (i.e., by construction) at vertices
in M ′′ originated from interior and boundary non-cone vertices of M ′. It is also true for vertices originated from
cone vertices C ′ of M ′ since at these points a point sub-group of G was applied to the neighbours of every cone
point and therefore the cone points are at the centroid of their neighbours in M ′′. Further note that M ′′ is a
boundaryless surface triangulation and therefore 3-connected.

Proposition 2. The linear system L is non-singular.

Proof. Assume a non-trivial solution u to the homogenous version of the linear system L. Non-singularity
will be proved by showing that u is necessarily trivial, u ≡ 0. Let h(u) = aTu be an arbitrary linear functional
in R2.

Consider the homogeneous tiling s(M ′′) of s(M ′), i.e., using the homogeneous version of (3)-(4). That is,
without a translational part. Further note that ui for all vertices originated from cone points C ′ are all zero.
This can be understood from the homogeneous version of (2) and the homogeneous transformations (3)-(4).
Lastly, note that there are only a finite number of homogeneous transformations in the symmetry groups G; in
other words, the homogeneous tiling of s(M ′) consists of infinitely repeating copies of a finite number of linear
(not affine) transformations of s(M ′).

By the comments above, the vertex function h defined by hi = aTui is a convex combination function over
all vertices of M ′′. Let hj = mini hi. Such a minimum exists since s(M ′′) consists of a finite number of copies of
s(M ′). If hj < 0 we can use a discrete maximum principle argument and construct a path P connecting uj and
its nearest cone vertex uc in s(M ′′) and conclude that hc = hj < 0, in contradiction to the homogeneous version
of (2) that asserts uc = 0. Repeating this argument for hj = maxi hi we get that h ≡ 0. Since a is arbitrary
u ≡ 0.

�

Figure 5(a) shows some examples of convex combination homeomorphisms of topological spheres onto a
sphere-type Euclidean orbifold; (b) shows a comparison of convex combination mappings of the same cut surface
M ′ onto two convex polygonal domains (disk-like and square) and a sphere-type orbifold. Note how angles are
better preserved in the latter mapping; this will be discussed later on. Note that in case that N is a convex
polygonal domain only equations (a) and (c) are used and there is no need for (b). That is, all boundary vertices
of M are mapped to vertices of Ω = N .

Theorem 1. Let M be a 3-connected surface triangulation and N ∈ F a homeomorphic target domain.
Then, the simplicial map f defined by L is a homeomorhpism.
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Figure 6. Diagram for proof of (ii) in homeomorphism proof.

3. Proof of homeomorphism.

It is not a-priori clear that f : M → N constructed above is a homeomorphism. Indeed, f constructed with
N taken to be a non-convex polygonal domain or a different Euclidean cone surface in general will not always be
a homeomorphism. Next we will prove the homeomorphism property of f using arguments from different papers
[AL16, Lov04, Lip14]. We will prove only the case of N being a orbifold for two reasons: first, the proof
for convex polygonal domains can be easily deduced from the proof below (it is almost a particular case), and
second, the proof for convex polygonal domains has many excellent versions in the literature, e.g., the concise
proof in [EH10], and the proof based on a discrete index theorem in [GGT06]. We also note the proof in
[Lov04]. In the original orbifold paper [AL15] the proof of the embedding is done by reduction to the torus
case, which is a particular instance of a Euclidean orbifold and is a sub-group of all other wallpaper groups. We
provide here, hopefully, a clear, short and self-contained proof. The proof follows the following steps:

(i) The simplicial map s : M ′ → R2 defined by the solution to L does not degenerate and maintains the
orientation of at least one triangle of M ′.

(ii) Given two triangles sharing an edge in M ′. If s does not degenerate one of the triangles then it also does
not degenerate the other triangle and the images of the two triangles under f will be on two different sides
of the common edge.

(iii) s does not degenerate and maintains the orientations of the triangles of M ′ and therefore defines a home-
omorphism f : M → N .

4. Part (i).

We will consider the mesh M ′′ and the tiling s(M ′′) of s(M ′). Consider a generic point u ∈ R2 (i.e., a point
not on any edge image of M ′′, i.e., u /∈ s(E′′)). We will show it is contained in some non-degenerate positively
oriented triangle s(fijk). To find such a triangle we can compute the winding number ω(u, t) of u w.r.t. the
oriented boundary curve of some oriented triangle t = s(fijk). If u ∈ t then ω(u, t) = ±1 otherwise ω(u, t) = 0.
Another property of the winding number is that

(7)
∑
i

ω(u, ti) = ω(u,∪iti).

Let us denote the diameter of s(M ′) by d > 0. To find a triangle containing u let us consider a tiling of enough
copies of M ′ around u using group transformations G (as defined in Equations (3)-(4) and Figure 2) so that:
(i) any copy of M ′ not considered is of distance greater than d to u; and (ii) the boundary of the union of this
tiling is a closed polygonal line of distance at-least d to u. From (i)+(ii) we get that the winding number of u
w.r.t. the boundary of the tiling is 1. On the other hand by (7) the winding number equals the sum of windings
of all triangles in the tiling. Therefore, there has to be at-least one triangle positively oriented and containing u.

5. Part (ii):

To prove (ii) we will start with the following lemma for the infinite triangulation M ′′:

Lemma 1. Let s(M ′′) be a tiling generated from a convex combination map s(M ′) defined as the solution of
L. Consider an infinite line ` ⊂ R2 and vertices ui, uj which are strictly on one side of `. Then, there is a path
P ⊂ E′′ connecting ui, uj that is also strictly on the same size of `.
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Before proving this Lemma let us use it to prove (ii). Let fijk, fikl be two faces in M ′ sharing an edge
and fijk is not degenerate. It is enough to show (ii) for a copy of these faces in M ′′ (since all these copies
are rigid motions of the original triangles). For a bit of notational convenience we will treat u ∈ C ∼= R2, and
<(u) will denote the real part of u. Without loosing generality assume that ` = {u | <(u) = 0} and <(uk) > 0.
Assume toward contradiction that <(ul) ≥ 0, see Figure 6. By the convex combination property there are
vi′ , vj′ neighbors of vi, vj (resp.) so that <(ui′),<(uj′) < 0. Use Lemma 1 to connect vi′ and vj′ by a path
P = [vi′ = vp0 , vp1 , vp2 , . . . , vpk , vj′ = vpk+1

] with <(upi) < 0, for i = 1, . . . , k. Now consider the simple closed
path Q = [vj , vi, P ]. The path Q divides M ′′ to two connected parts, one bounded and one unbounded. Consider
the bounded part U ⊂ V ′′: it contains either vk or vl. Since <(uq) ≤ 0 for all uq ∈ Q, the (second part of the)
discrete maximum principle (Proposition 1) implies that <(uj) ≤ 0 for all vj ∈ U . Since <(uk) > 0, U cannot
contain vk.

So vl ∈ U . In fact, vl is in the interior of U . Indeed, vl 6= vi, vj , and <(ul) ≥ 0 while <(upi) < 0,
i = 0, . . . , k + 1 so vl /∈ P .

There exists U ′ ⊂ U a 3-connected subgraph containing vl and a boundary point vb ∈ P . By the 3-
connectedness of M ′′ removing vi, vj keeps M ′′ connected and we can connect vl to a vertex outside U using
a path not passing through vi, vj which mean the path must intersect a vertex vb ∈ P . Let this path be
P ′ = [vl = w0, w1, . . . , ws−1, vp = ws]. W.l.o.g. we can assume vp is the first boundary vertex in P (since
otherwise we can shorten the path). The union of the 1-neighborhoods of wr, r = 0, . . . , s is a 3-connected
graph.

Lastly, since U ′ is 3-connected, <(ul) ≥ 0 while there is a boundary vertex in U ′ so that <(ub) < 0 we have
a contradiction by the maximum principle (since <(ul) ≥ 0 attains a maximal value).

Proof. (Lemma 1)
Lets assume, as before, without loosing generality that ` = {u | <(u) = 0}. Let us first show that we can find an
infinite path P = [vi, vi1 , vi2 , . . .] starting from ui so that <(ui) ≤ <(uik)↗∞. Assume that vi has a neighbor
vi1 so that <(ui1) > <(ui). Then from the convex combination property we can construct a strictly monotone
infinite series P = [vi, vi1 , vi2 , . . .]. We need to show that <(uik)→∞. Since M ′′ is made out of finite number of
types of edges there is a number δ > 0 so that <(uik+1

)−<(uik) ≥ δ and the convergence to infinity is proven.
If vi does not have such a neighbor, the convex combination property means all its neighbors are on the line
`+ <(ui). Since M ′′ is not contained in `+ <(ui) there is some vertex vi′ connected to vi by a simple path so
that <(vi′) > <(vi). Now we can continue as above to construct P .
Let P = [vi, vi1 , vi2 , . . .] and Q = [vj , vj1 , vj2 , . . .] be two monotonic paths starting from vi and vj (resp.) and
going to infinity. If P,Q intersect at some vertex we have a simple path connecting vi, vj . So lets assume they do
not intersect. As before, let d > 0 denote the diameter of one copy of the image of M ′ in R2, s(M ′). Therefore,
any two cones vc1 , vc2 , or a vertex vk and a cone vc1 in the same copy of M ′, can be connected by a shortest path
that is contained in a disk of diameter d. Therefore given two arbitrary vertices vk, vl, such that <(uk) ≤ <(ul)
they can be connected by a path R going from vk to a nearest cone vc1 , traveling on the two dimensional grid
made of cones to a nearest cone vc2 to vl and then to vl. Note that the cone grids of all Euclidean orbifolds are
regular and made out of two generators, nη +mξ. All the vertices of R satisfy <(ur) > <(uk)− 2d. Therefore
continuing P,Q until their distance from ` is at-least 2d, they can be connected by a path R also to the right of
`. Concatenating P,R,Q−1, possibly eliminating cycles will provide the desired path. �

6. Part (iii).

To prove (iii) we note that we have by now that all triangles in s(M ′′) are non degenerate and positively
oriented. We will repeat the winding number argument above to conclude that every generic point u ∈ R2 is
covered by exactly one triangle s(fijk). Repeating the same argument we see the winding w.r.t. a sufficiently
large tiling is 1. Also the triangles not participating in the tiling are too far to contain u. Since all the triangles
in the tiling can contribute either 0 or 1, we conclude exactly one triangle contain u. Since s is an open map it
means that every point u is covered exactly once. Therefore s : M ′′ → R2 is a homeomorphism, and consequently
f : M → N is a homeomorphism on N .
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Figure 7. An approximation of the notorious Riemann map from a polygonal approximation
of the Koch snow-flake (computed with 6 recursions) to a triangle. The approximation is
computed with a 6 million vertex mesh and captures different resolutions of this map as shown
in the blow-up on the right. Image taken from [DSL19].

7. Variational principle.

When the weights are symmetric, wij = wji, convex combination maps have variational formulation. Denote
the discrete Dirichlet energy by

(8) ED(u) =
1

2

∑
eij∈E

wij(ui − uj)2.

The linear system of equations L characterizes the solution of the following variational problem:

min
u

ED(u)(9a)

s.t. aTi ui + bi = 0, ∀ 〈vi〉 ∈ V ′BS(9b)

ui = rii′ui′ + tii′ , ∀ 〈vi〉 ∈ V ′BP(9c)

ui = pi, vi ∈ C ′(9d)

One way [PP93, Flo03a] to figure out a good choice of weights wij is to choose it so that (8) becomes the

Dirichlet energy,
∫
M
|∇f |2, when computed on a piecewise linear simplicial map f . A calculation shows that in

this case

wij = cotαij + cotβij ,

where αij , βij are the angles opposite to the edge eij in M . These weights are called the cotan weights for obvious

reasons. The cotan weights are symmetric and since wij =
sin(αij+βij)
sinαij sin βij

they are positive iff the sum of angles

supporting eij is smaller than π; such a triangulation M is called Delaunay (without 4 cocircle points). Using
non-positive weights will generically damage the homeomorphism property of the map f but approximation
properties will not be affected (discussed later). Another interesting option of weights which are not symmetric
but always positive are the mean-value weights [Flo03b]. Although they don’t possess a variational principle
due to the non-symmetry these weights can be used in the linear system L to produce homeomorphic convex
combination mappings.
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Figure 8. Convex combination homeomorphism, mapping a triangulation of a simply con-
nected polygonal domain (left) onto a Euclidean orbifold triangle (middle). On the right, a
pull-back checkerboard texture via the inverse of the mapping to visualize the conformality of
the discrete mapping.

8. Approximation of conformal mappings.

The variational representation (9) leads to an interesting observation in case wij are the cotan weights
[AL15]. The Dirichlet energy can be seen as an upper-bound to the area functional,

ED(u) ≥ EA(u),

where EA denotes the area functional, measuring the sum of (positive) triangle areas in s(M ′). In case M is
3-connected and Delaunay, wij > 0, and Theorem 1 implies that EA(u) = area(Ω) = area(N ). The difference

EC(u) = ED(u)− EA(u)

can be seen as the conformal distortion, and in the case u is a homeomorphism it equals the so-called least-
squares conformal energy [LPRM02]. When using N ∈ F with three cone points the number of constrained
points exactly matches the degrees of freedom specified by the Riemann mapping theorem. Therefore, one can
ask if f : M → N actually converges under refinement to the unique conformal map, mapping three prescribed
points in M to the cones of N . This was proved recently in [DSL19] for the case of a simply connected polygonal
domain in the plane, and when N ∈ F is a triangle. In fact it is shown that convergence in H1 holds for any
triangle (not just ones that can tile the plane) and any mesh (not necessarily Delaunay) however it is uniform
when M is Delaunay and N ∈ F (so f is a homeomorphism):

Theorem 2. Let P ⊂ R2 be a simply-connected polygonal domain and N a triangle. Let Mh be surface
triangulations of P with maximal edge length h→ 0 and all angles of the triangulations bounded below by some
δ > 0. Let fh : P → N denote the simplicial maps defined by solving L fixing three pre-images in ∂P to the
cones of the triangle. Let Φ : P → N be the Riemann map fixing the same pre-images. Then,

‖fh − Φ‖H1 → 0.

Furthermore, if Mh are Delaunay and 3-connected, then the convergence is also uniform.

Figures 7,8 show examples of approximations of Riemann mappings from polygonal domains to Euclidean
orbifolds; the checkerboard texture visualizes the conformality of the simplicial mappings.

9. Surface to surface mappings.

Another application of convex combination mappings is Problem 1, namely construction of a homeomorphism
f : M1 → M2 between two surface triangulations M1,M2. Consider a cone surface N ∈ F that is topologically
equivalent to both M1 and M2. Construct simplicial homeomorphisms f1 : M1 → N and f2 : M2 → N and
consider f = f−12 ◦ f1 : M1 → M2. The map f can be seen as simplicial if one considers an isomorphic joint
subdivision (a.k.a. meta-mesh) M of M1 and M2. Using N with three cones provides a simplicial homeomor-
phism approximating the conformal map interpolating arbitrary three vertices between M1 and M2. (Note that
M1,M2 are in particular Riemann surfaces.) Using N ∈ F with four cones (i.e., orbifold of type (2222)) provides
a quasiconformal map f : M1 →M2 with approximately constant conformal distortion. Therefore, the orbifolds
N with the four cone points provide a quasiconformal approximation to the Teichmüller map interpolating four
points on the sphere [AEK+66]. Indeed, it is possible to write f = f−12 ◦A◦f1, where f1, f2 are homeomophisms
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Figure 9. A simplicial map between pairs of surface triangulations composed out of two convex
combination mappings to a common orbifold (here (2222)); the colored spheres indicate the
interpolated points (xi, yi) ∈M1 ×M2 in the map. Images taken from [AL15].

of finite surface triangulations, which makes them quasiconformal, and since f1, f2 approximate conformal map-
pings their conformal distortion is close to 0; A is an affine map. Figure 9 depicts examples of approximate
quasiconformal mapping between pairs of surface triangulations interpolating four landmark points.

10. Other Euclidean cone surfaces.

Problem 2. When are convex combination mappings onto Euclidean cone surfaces not in F homeomor-
phisms?

This could be useful for discrete mappings for two reasons: (i) it will allow constraining more than three or
four points; and (ii) it will potentially allow choosing N so to reduce isometric distortion exerted by the map.
As far as the author knows there are no Euclidean cone surfaces outside the family F that generically allow
homeomorphic convex combination maps. Furthermore, an interesting (and not completely solved) problem is:

Problem 3. Find a characterization of when a Euclidean cone surface provides a homeomorphic convex
combination map, even if it does not allow it generically.

Let us review several known results addressing this latter problem discussing other Euclidean cone surfaces
N /∈ F . In [GGT06] non-convex polygonal domains are discussed and a sufficient condition for a convex
combination map to be bijective in this case is that every reflex cone (i.e., a cone x with angle sum θ(x) > π)
is in the convex hull of its neighbors. (Notice that this latter condition can fail.) A similar generalization to
multiply-connected domains also exists.

In [BCW17] a Euclidean cone manifold with rational cone angles k 2π
q , k, q ∈ N is considered and it is shown

that if the triangles adjacent to the cones are positively oriented then the convex combination map is locally a
homeomorphism.

In [TFV+13, AL16] convex combination mappings are considered into the hyperbolic plane by minimizing
the discrete hyperbolic Dirichlet energy [SZS+13]:

ED(u) =
1

2

∑
eij∈E

wij d(ui, uj)
2,

where ui ∈ H are points in the hyperbolic plane and d(·, ·) denotes the hyperbolic distance. Boundary conditions
can be added to form a variational problem generalizing (9) to the hyperbolic case, namely for defining and
computing homeomorphic simplicial mappings of a surface triangulation onto one of the hyperbolic orbifolds
{N}. Hyperbolic orbifolds, are defined similarly to the Euclidean orbifolds as H/G where G is a symmetry
group of the hyperbolic plane. In contrast to Euclidean orbifolds, hyperbolic orbifolds are an infinite family of
(hyperbolic) cone surfaces that include arbitrary genus surfaces and arbitrary number of cones. The boundary
conditions are similar to (9b)-(9d) forcing identified boundary vertices of M ′ to correspond via the relevant
hyperbolic isometries, namely Möbius transformations. It is proved in [AL16], basically following the same proof
as the Euclidean case above (this time in the Klein hyperbolic model), that critical points of this non-linear
problem provide homeomorphisms onto the respective hyperbolic orbifold. Figure 10(a) shows a sphere-type
hyperbolic orbifold with seven cones of angle π, i.e., with symbol (27); (b) shows a homeomorphic hyperbolic
convex combination mapping to this hyperbolic orbifold; (c) shows a homeomorphism f = f−12 ◦ f1 : M1 →M2
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(a) (b) (c) (d)

Figure 10. (a) shows (an approximation) of a sphere-type hyperbolic orbifold with seven cones
of angle π; (b) hyperbolic convex combination mapping of a sphere-type surface triangulation
(owl) to this target orbifold; (c)-(d) homeomorphisms of surface triangulations by composing
hyperbolic convex combination mappings to a common orbifold. Images taken from [AL16,
MGA+17].

between two human surface triangulations M1,M2 interpolating seven landmark points, where fi : Mi → N ,
i = 1, 2 are hyperbolic convex combination mapping to the same hyperbolic orbifolds. Note that allowing the
interpolation of seven points produces a more faithful map than the one generated with four interpolated points
in the Euclidean case, Figure 9, right. Figure 10(d) shows another application of mapping anatomical surfaces
(teeth).

11. Convex combination in higher dimensions.

A natural question is the generalization of convex combination mapping to three dimensional simplicial
complexes. Consider a tetrahedral mesh M = (V,E, F, T ), where T = {tijkl} is the tetrahedra set, tijkl =
hull {vi, vj , vk, vl}. Convex combination mappings can be defined as before using (1). Unfortunately, even in the
most basic case of a convex polyhedron boundary conditions (assuming M is topologically a ball) the convex
combination map is not guaranteed to be a homeomorphism, and counter examples were found [DVPV03,
FPT06]. x
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