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Discrete Parametric Surfaces
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1. Introduction

Discrete parametric surfaces are discrete analogues of smooth parametric surfaces.
They are, however, not simply discrete approximations of their smooth counter-
parts, but are the subject of a separate discrete theory. As it turns out, a sys-
tematic theory of parametric surfaces can be based on integrable systems, and the
discrete case can be interpreted as a “master” case which contains smooth surfaces
as a limit.

This section on discrete parametric surfaces is organized as follows: We first
introduce notation. Two particular kinds of discrete surfaces are discussed next:
circular nets in §2, and K-nets in §3 are examples of a 3-system and a 2-system,
respectively. In the case of K-nets, we also discuss the relation to the sine-Gordon
equation. We then show applications within mathematics in §4, cf. [BHS06], and
the connection with freeform architecture in §5, cf. [PW16]. The main source for
this chapter is the monograph [BS09].

1.1. Discrete, semidiscrete, and continuous surfaces. The simplest case
of a continuous surface is a point x(u1, u2) of space depending on two parameters u1,
u2. A discrete surface x(i1, i2) is the same, only the parameters i1, i2 are integers.
The notion of transformation of a surface usually refers to a pair x(u1, u2) and
x(1)(u1, u2) of surfaces which are in a certain relation (images taken from [BS09]):

x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)x(u1, u2) = y(u1, u2, 0)

x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)x(1)(u1, u2) = y(u1, u2, 1)

x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)x(i1, i2) = y(i1, i2, 0)

x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)x(1)(i1, i2) = y(i1, i2, 1)
(1)

The theory of transformations was fully developed in the 1920s, cf. [Eis23]. Well
known instances are Darboux transforms, Bäcklund transforms, or the Christoffel
transform (which relates minimal surfaces with conformal mappings into sphere,
and leads to the Weierstrass representation of minimal surfaces in terms of mero-
morphic functions). A sequence of surfaces created by iterated application of a
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2 JOHANNES WALLNER

transformation rule constitutes a semidiscrete object y(u1, u2, i3), where i3 is an
integer parameter:

y(u1, u2, 0) = x(u1, u2), y(u1, u2, 1) = x(1)(u1, u2), y(u1, u2, 2) = x(11)(u1, u2), . . .

Transformations of discrete surfaces can be treated in a similar way: With

y(i1, i2, 0) = x(i1, i2), y(i1, i2, 1) = x(1)(i1, i2), y(i1, i2, 2) = x(11)(i1, i2), . . .

we define a mapping y from Z3 to space. We see that a sequence of discrete k-
dimensional surfaces is nothing but a discrete (k+ 1)-dimensional surface, and the
special role of the first two parameters disappears.

A particular feature of many transformations is that they enjoy Bianchi per-
mutability: If x has transforms x(1) and x(2), then there exists x(12) which is a
transform of both x(1) and x(2) simultaneously (image taken from [BS09]):

z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)z(u1, u2, 0, 0) = x(u1, u2)

z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2)z(u1, u2, 1, 0) = x(1)(u1, u2) x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)x(2)(u1, u2) = z(u1, u2, 0, 1)

x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)x(12)(u1, u2) = z(u1, u2, 1, 1)

(2)

By iterating this procedure we create a two-dimensional lattice of surfaces, i.e., a
mapping “z” from R2×Z2 to space. It can be seen as a semidiscrete 4-dimensional
surface z(u1, u2, i3, i4). It is very interesting that the 2D discrete surfaces x(i1, i2) =
z(u1, u2, i3, i4) contained in this 4-dimensional semidiscrete object typically exhibit
geometric properties similar to discrete surfaces: The transformations which apply
to a class of smooth surfaces provide guidelines on how to find a class of analogous
discrete surfaces.

However if x is a discrete surface to begin with, a 2-dimensional lattice of
surfaces is nothing but a 4-dimensional discrete surface z(i1, i2, i3, i4). The special
role of the first two parameters disappears.

It is a key principle of discrete differential geometry that the smooth theory
can be obtained by a limit process from the discrete one. We can let a 2D discrete
surface converge to a smooth surface, a 3D discrete surface to a sequence of smooth
surfaces, and so on.

Figure 1. Discrete K-surfaces. Their defining property is that in
each face, opposite edges have equal length, and in each vertex, all
four incident edges are co-planar. Discrete surfaces can converge
to semidiscrete or continuous surfaces.
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1.2. History. Integrable equations. An important feature of parametric
surfaces is the relation to integrable equations. This connection has a long tradi-
tion. The best known example concerns a special “asymptotic” parametrization of
surfaces whose Gauss curvature equals the constant −1. It turns out that the angle
φ(u1, u2) between parameter lines obeys the sine-Gordon equation

(3) ∂12φ = sinφ.

It is a fact that for any solution φ(u1, u2) of this equation, another solution φ(1),
called the Bäcklund transform of φ, can be defined by

∂1φ
(1) = ∂1φ+ 2a sin

φ+ φ(1)

2
, ∂2φ

(1) = −∂2φ+
2

a
sin

φ(1) − φ
2

.

This Bäcklund transformation of functions corresponds directly to the Bäcklund
transformation of surfaces: φ and φ(1) are angle functions associated with a Bäcklund
pair of surfaces x and x(1). There is even a Bianchi permutability theorem anal-
ogous to the surface case: With the arrow symbolizing the Bäcklund relation, we
have

φ(1)

φ

77

''
φ(2)

=⇒ ∃φ(12) such that

φ(1)

((
φ

77

''
φ(12).

φ(2)

66(4)

Surfaces of constant Gaussian curvature have been instrumental in the development
of the systematic “integrability” theory of discrete surfaces. The original Bäcklund
transform of smooth K-surfaces was published in 1883 [Bäck83], and the per-
mutablity theorem soon after [Bia02]. Discrete K-surfaces were constructed in the
1950’s [Sau50, Wun51]. The connection of discrete surfaces to the discrete Hirota
equation, which is a discrete analogue of the sine-Gordon equation, was revealed
by [BP96]. We are coming back to this topic in §3.

Typically, for any particular class of surfaces (e.g. the circular nets of §2 or
the K-nets of §3) one needs some elementary geometric construction in order to
establish multidimensional discrete surfaces. Since the discrete case serves as a
master theory from which the continuous one is obtained by a limit process, that
elementary geometric theorem can be seen as the discrete analogue of the various
kinds of integrability needed to construct surfaces and their transformations.

1.3. Curvatures. Surface classes can be equivalently characterized by dif-
ferent properties. E.g., a surface is minimal ⇐⇒ it is locally area-minimizing
⇐⇒ its mean curvature vanishes ⇐⇒ it has a parametrization in terms of of
meromorphic functions f(z) and g(z) such that fg2 is holomorphic, with x(u, v) =
1
2 Re

∫ u+iv

0

(
f(z)(1− g(z)2), if(z)(1 + g(z)2), 2f(z)g(z)

)
dz.

It is this Weierstrass representation which leads to a discretization in the con-
text of parametric surfaces (see §4). Area minimization is the basis of a different
discretization, which is not parametric [PP93].

It is a curious fact that many classes of surfaces which are originally defined via
curvature (K-surfaces, minimal surfaces, cmc surfaces) had well-established discrete
counterparts which were defined by an equivalent characterization not involving
curvatures. However, meanwhile curvatures for discrete surfaces have been studied
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Figure 2. Left: A conjugate parametric surface x : U ⊂ R2 → R3

covers most of this geometric shape. Center: discrete paramet-
ric surfaces extracted by sampling have elementary quadrilaterals
which are almost planar. Right: Global optimization makes all
faces planar. This optimization problem is numerically feasible
because we are already very close to a solution.

in a systematic way, and there are general concepts of curvatures which apply to
the discrete surface classes mentioned above [BPW10, HSFW17].

1.4. Discretization principles. The difficulty of assigning curvatures illus-
trates an important issue: It is not clear a priori which of the various equivalent
properties of a class of smooth surfaces should be the one which guides the dis-
cretization. However, a discretization is good, or worthy of further investigation,
if not just one property carries over from the smooth to the discrete setting, but
more than one. For example, the variational definition of discrete minimal surfaces
by [PP93] leads to simplicial minimal surfaces which not only minimize area, but
which also exhibit an associated family of minimal surfaces. The guiding principle
of discretization in the case of parametric surfaces often is integrability, or (in the
discrete case), so-called multidimensional consistency.

1.5. Notation for continuous and discrete nets. A smooth parametric
surface maps a parameter value u ∈ Rd to a point x(u) ∈ Rn. Derivatives are
described by the symbols

∂kx, ∂klx, . . .

A discrete parametric surface maps an integer parameter value u = (u1, . . . , ud) ∈
Zd to a point x(u) ∈ Rn. The role of derivatives is played by differences, e.g.

∆1x(u1, u2, . . . , ud) = x(u1 + 1, u2, . . . , ud)− x(u1, u2, . . . , ud),

∆2x(u1, u2, . . . , ud) = x(u1, u2 + 1, . . . , ud)− x(u1, u2, . . . , ud).

In general, we use a lower index i to indicate a forward shift in the i-th parameter,
and the index ī to indicate a backward shift.

xk(. . . , xk, . . .) = x(. . . , uk + 1, . . .) xk̄(. . . , xk, . . .) = x(. . . , uk − 1, . . .)

We use the notation xkk, xkl, xk̄l, and so on for iterated
shifts. E.g. in a 2-dimensional net x(u1, u2) we use a dia-
gram like the one shown in the inset figure to indicate the
immediate neighborhood of a general point x(u1, u2). The
forward difference operator is expressed as ∆kx = xk − x.

x1̄2 x2 x12

x1̄ x x1

x1̄2̄ x2̄ x12̄
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1.6. Examples. Conjugate surfaces. A conjugate parametrization is one
where infinitesimal parameter quads are planar. For 2-surfaces, this means that we
require

3 vol
(

c.h.
(
x(u), x(u1 + ε, u2), x(u1, u2 + ε), x(u1 + ε, u2 + ε)

))
/ε4

= det(x(u1 + ε, u2)− x(u), x(u1, u2 + ε)− x(u), x(u1 + ε, u2 + ε)− x(u))/2ε4

≈ det(ε∂1x, ε∂2x, ε∂1x+ ε∂2x+ 2ε2∂12x)/2ε4

= det(∂1x, ∂2, ∂12x) = 0

The “≈” sign means equality up to remainder terms in the Taylor expansion as
ε→ 0. We say that all infinitesimal elementary quadrilaterals of the net are planar.
It is obvious how to translate the defining property

det(∂kx, ∂lx, ∂klx) = 0

to the discrete case: a discrete conjugate net is defined by

det(∆kx,∆lx,∆klx) = 0.

Generically this is equivalent to

xl xkl

x xk
co-planar,(5)

or to existence of coefficients clk, ckl associated with the elementary quadrilateral
xxkxlxkl, such that

∆k∆lx = clk∆kx+ ckl∆lx.

For reasons which become apparent later, we use this property as definition of a
discrete conjugate surface (a synonym is conjugate net).

2. Circular nets: a 3-system

There are two major classes of discrete parametric surfaces guided by the dis-
cretization principle of multidimensional consistency. These are the 2-systems and
the 3-systems, and we explain these notions by means of prominent examples: the
K-nets for the 2-systems, and the circular nets for the 3-systems. We begin with
the 3-system case.

Definition 2.1. A circular net is a discrete parametric surface where all ele-
mentary quadrilaterals are co-circular, i.e., for every vertex x and neighbors xk, xl,
there is a circle which contains the four vertices x, xk, xl, xkl.

Obviously, a circular net is also conjugate. The following result concerning
existence of conjugate nets and circular nets implicitly contains the definition of a
3-system:

Theorem 2.2. Conjugacy of nets is a 3-system: Generically, a conjugate
net x(u1, u2, u3) is uniquely determined by arbitrary initial values x(0, u2, u3) and
x(u1, 0, u3) and x(u1, u2, 0). The same applies to circularity.
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xxxxxxxxxxxxxxxxx

x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1
x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2

x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3
x23x23x23x23x23x23x23x23x23x23x23x23x23x23x23x23x23

x13x13x13x13x13x13x13x13x13x13x13x13x13x13x13x13x13
↓

x123x123x123x123x123x123x123x123x123x123x123x123x123x123x123x123x123

x12

Figure 3. Left: 2D circular net. Right: An elementary cell of a
3D circular net.

Proof. Consider a combinatorial cube with diagonal x—x123, see the figure
below. Assume that the quadrilaterals xx1x2x12, xx1x3x13, xx2x3x23 adjacent to
x are planar. Does there exist x123 such that the three quads adjacent to x123 are
planar?

x23

x3 x13

x2 x12

x x1

=⇒

x23 x123

x3 x13

x2 x12

x x1

The answer is trivially yes for a conjugate net in RPn, n ≥ 3, since the planes
carrying the three missing faces are given by three vertices each, and x123 is the
intersection of these planes.

For circular nets, this is not so obvious: The
circumcircles of the three quads incident to x123

are given by three points each, but do they inter-
sect in a common point x123? The answer is yes:
whenever the three quads xxkxlxkl have a circum-
circle, then the three circumcircles of x1, x12, x13,
x2, x23, x21, x3, x31, x32 meet in a common point
x123.

x

x1

x2

x3

x12

x23

x13 x123

x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1 x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3

x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2

x23x23x23x23x23x23x23x23x23x23x23x23x23x23x23x23x23

x12x12x12x12x12x12x12x12x12x12x12x12x12x12x12x12x12

x13x13x13x13x13x13x13x13x13x13x13x13x13x13x13x13x13

x123x123x123x123x123x123x123x123x123x123x123x123x123x123x123x123x123

x =∞
For a proof we observe that the statement is not
affected by Möbius transformations. We therefore
apply an inversion to move x to infinity. Circles
passing through x become straight lines, so xkl
becomes a point of the edge xkxl of the triangle
x1x2x3. The statement about circumcircles is now
shown by using elementary geometry. �

The proof makes it clear that the “right” geometric setting for conjugate nets
is projective space, whereas circular nets should be treated in Möbius geometry.

Proposition 2.3. Assume that x(i1, i2, i3) is a conjugate net, and that all
elementary quadrilaterals which contain vertices with i1 = 0 or i2 = 0 or i3 = 0 are
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circular. Then, generically, circularity propagates through the net: all elementary
quads are circular. The same is true for n-dimensional nets with n ≥ 3.

Proof. It is sufficient to show this statement for a 3-cell with diagonal x—x123

where the three quads incident to x are circular. If we require circularity, then x123

is uniquely determined as the intersection of circumcircles of the quads incident to
it. But x123 is already uniquely determined by the intersection of the planes which
carry those quads. It follows that x123 is the same regardless if it is computed via
the 3-system “conjugacy” or via the 3-system “circularity”. �

Lemma 2.4. Consider the coefficient functions used in the definition of a con-
jugate net, see (5), ∆k∆lx = clk∆kx + ckl∆lx. For a conjugate 3-net, there is a
birational mapping

(c12, c21, c23, c32, c31, c13)
φ7−→ (c12

3 , c
21
3 , c

23
1 , c

32
1 , c

31
2 , c

13
2 )

of the coefficients in quads incident to x, to coefficients in quads incident to x123.

x23

x3 x13

x12

x

c13, c31

x1

=⇒

x23 x123

x3

c 123 , c 313

x13

x12

x x1

c
23
1
, c

32
1

Proof. We use the “product rule” ∆j(a · b) = aj ·∆jb+ ∆ja · b to expand

∆i∆j∆kx = ∆i(c
kj∆jx+ cjk∆kx) = ckji ∆i∆jx+ ∆ic

kj∆jx+ · · ·

= (ckji c
ji + cjki c

ki)∆ix+ (ckji c
ij + ∆ic

kj)∆jx+ (cjki c
ik + ∆ic

jk)∆kx.

Permuting indices yields

∆j∆k∆ix = (cikj c
kj + ckij c

ij)∆jx+ (cikj c
jk + ∆jc

ik)∆kx+ (ckij c
ji + ∆jc

ki)∆ix.

∆k∆i∆jx = (cjik c
ik + cijk c

jk)∆kx+ (cjik c
ki + ∆kc

ji)∆ix+ (cijk c
kj + ∆kc

ij)∆jx.

Since ∆i∆j∆k is invariant w.r.t. permutations of indices, and generically the first
derivatives are linearly independent, we get

∆ic
jk = cijk c

jk + cjik c
ik − cjki c

ik (i 6= j 6= k 6= i).

These are 6 linear equations for the 6 variables (c12
3 , . . . , c

32
1 ). Their explicit solution

by matrix inversion yields the desired rational mapping φ, and analogously for the
inverse φ−1. Even if φ was derived under the assumption of linearly independent
first derivatives, it may be applied to all input data. �

The following result implicitly defines an integrable discrete 3-system:

Theorem 2.5. Conjugacy is a 4-consistent (i.e., integrable) 3-system: If in the
combinatorial 4-cube with diagonal x . . . x1234, conjugacy is imposed on the faces
incident to x (and by the 3-system property , on the four 3-cubes incident to x),
then there is a generically unique choice of x1234 such that also the remaining quads
of the hypercube enjoy the property. Analogously, circularity is 4-consistent.
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x

x1 x2

x12

x3

x13 x23

x123 x4

x14 x24

x124

x34

x134 x234

x1234

Proof. The hypercube with diagonal x—x1234 contains four 3-cubes incident
with x1234. Within each of these cubes, x1234 is found as the intersection of 3 quads.
E.g. from the cube with diagonal x—x123 we get

x1234 ∈ span(x12x123x124) ∩ span(x13x132x134) ∩ span(x14x142x143).(6)

The cubes with diagonals x—x124, x—x134, and x—x224 yield three more ways to
express x1234 as intersection of three planes. We must show that all these are equal.

(1) Each of the quads mentioned above is the intersection of two adjacent 3-
cubes. Counting shows that these six cubes are actually all four 3-cubes incident
with x1234.

(2) Thus, in case of dimension ≥ 4 and general position, (6) is transformed into
an intersection of four 3-spaces (each is the span of a 3-cube). Since all 3-cubes
incident to x1234 occur in this expression, the transformed expression is invariant
w.r.t. permutation of indices =⇒ all ways of computing x1234 yield the same
result.

(3) x1234 can also be found in an alternative way, namely by using the coeffi-
cients cij defined by (5). We can compute them in the quads incident to x, apply
φ, and compute vertices x123, x124, x134, x234. Repetition of this procedure for the
quads incident with x1234 yields four different expressions for x1234, within each
of the four cubes incident to x1234, i.e., there are four rational functions of the
arguments x, xi, xij which in the general position case and dimension ≥ 4 evaluate
to the same point x1234, by (2).

(4) Since almost all arguments have the general position property, the rational
functions constructed above are equal. They are independent of the dimension, so
they can be applied also in 3-space, proving 4-consistency.

Consistency of circularity follows as a corollary, since circularity propagates by
Prop. 2.3. �

An easy combinatorial argument even shows that 4-consistency of 3-systems
implies n-consistency for all n ≥ 4.

2.1. Principal curvature lines. We have not yet mentioned the smooth
class of surfaces which corresponds to the circular nets: It is the parametrization
of surfaces along principal curvature lines. There are several reasons for that:
Circularity of quads is a discrete version of orthogonality, but a more compelling
reason is the behavior of the surface normals. A curve c(t) on a surface is a principal
curvature line, if progress in that direction causes the unit normal vector to change
in the same direction ( ddtn(c(t)) = λ(t) ddtc(t), the tangent vectors of these curves
are eigenvectors of the Weingarten map −dn), so the surface traced out by the
surface normals is developable.
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Developability means that a surface normal N(c(t))
and its infinitesimal neighbor N(c(t+dt)) “intersect”
each other (in the same way an infinitesimal quad of a
conjugate net is planar). It is this surface of normals
which has a proper discrete analogue: As we progress
along a sequence of adjacent faces, the successive axes
of circles intersect, which yields a discrete developable
surface. Further, convergence of circular nets to prin-
cipal parametrizations can be shown [BS09].

3. K-nets: a 2-system

3.1. Asymptotic nets. Asymptotic param-
etrizations have elementary quads which are as
non-planar as possible. For a negatively curved 2-
surface in R3, the asymptotic tangents in a point
are found by intersecting the surface with its own
tangent plane; the parameter lines of the asymp-
totic tangents are the integral curves of these tan-
gents. The asymptotic condition reads

∂11x, ∂22x ∈ span{∂1x, ∂2}.(7)

A discrete version of this condition is the following: All symmetric 2nd differences
around a vertex are contained in the plane spanned by the first differences. This
can be formulated in a symmetric way:

x, x1, x1̄, x2, x2̄ ∈ plane P (u)

x2

x1̄ x x1

x2̄

(8)

Consequently, discrete A-nets are defined by the requirement that all edges ema-
nating from a vertex x(u) must lie in a common plane P (u).

3.2. Surfaces of constant Gaussian curvature. Surfaces of constant neg-
ative Gaussian curvature (K-surfaces) are interesting for a variety of reasons, e.g.
because the geometry of their geodesics locally coincides with classical hyperbolic
geometry. They are important for the development of discrete differential geom-
etry, since they were among the first where a meaningful discretization has been
obtained [Sau50, Wun51], and because of the integrable equations associated with
K-surfaces.

Like any other negatively curved surface in Euclidean 3-dimensional space, a
K-surface has an asymptotic parametrization. It is not difficult to show that for a
smooth asymptotic surface, the additional Chebyshev condition

∂2‖∂1x‖ = ∂1‖∂2x‖ = 0(9)
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characterizes K = const. Since the length of the derivative vectors w.r.t. one
variable does not depend on the other variable, we can re-parametrize and achieve

‖∂1x‖ = ‖∂2x‖ = 1.(10)

It turns out that in this case, when traversing a parameter line with velocity 1, the
surface’s normal vector is rotating with velocity

√
−K. An obvious discretization

of the Chebyshev property is

∆2‖∆1x‖ = ∆1‖∆2x‖ = 0.(11)

The construction of discrete K-surfaces depends on the properties of a so-called
Chebyshev quad, where opposite edges have equal lengths

‖x− x1‖ = ‖x2 − x12‖ and ‖x− x2‖ = ‖x1 − x12‖(12)

and which does not lie in a plane (skew parallelogram). The following statement is
elementary spatial geometry:

Lemma 3.1. A non-planar quadrilateral x—x1—x12—x2 with the Chebyshev
property given by (12) (opposite edges have equal lengths) is symmetric w.r.t. a
180 ◦ rotation about the axis spanned by the two midpoints of diagonals.

In each vertex x we consider a unit normal vector n orthogonal to the edges incident
with x. The cyclic orientation of the quadrilateral face defines the orientation of
the normal vector. The twist angle along an edge which is enclosed by the planes
at either end (resp. by their normal vectors) is the same for opposite edges,

〈n, n1〉 = 〈n2, n12〉 , 〈n, n2〉 = 〈n1, n12〉

(the unit normal vectors constitute a Chebyshev quad). Further, we can reconstruct,
up to scaling, the edges of the quadrilateral from these normal vectors by

x1 − x = n× n1, x2 − x = −n× n2.

Also the converse is true: Every net of unit normal vectors which fulfills these
conditions determines a K-net.

For a proof we refer to [BS09, §4.2.1]. The equal angles property is an imme-
diate corollary of the symmetry. An illustration in [Wun51] shows a K-net which
has actually been built, and where both the Chebyshev property and the angle
property can be observed.

The systematic treatment of A-nets and K-nets x(u) relies on the construction
of the so-called Lelieuvre normal vector field m(u), which has the property xk−x =
mk×m. It is a so-called T-net, the T-nets being an integrable 3-system. In this way
the geometric considerations of [Sau50, Wun51] concerning skew-parallelogram
lattices can be treated in a more high-level manner. We summarize, without proof:

Theorem 3.2. A discrete K-net x(i1, . . . , id) (an asymptotic net with the Che-
byshev property) has unit normal vectors n(i1, . . . .id) which form a Chebyshev net
themselves: The rotation angle of the normal vector along an edge xxk depends only
on the k-th parameter, and not on the others.

The K-net property is a 2-system in the following sense: If unit normal vec-
tors n(i1, 0) and n(0, i2) are given, then these data can be uniquely extended to a
Chebyshev net n(i1, i2) in the unit sphere, and a K-net x is derived from n by the
formulae above.
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xxxxxxxxxxxxxxxxx

x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1x1

x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2

x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3

x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4

x34x34x34x34x34x34x34x34x34x34x34x34x34x34x34x34x34

x134x134x134x134x134x134x134x134x134x134x134x134x134x134x134x134x134

x234x234x234x234x234x234x234x234x234x234x234x234x234x234x234x234x234

x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234x1234

Figure 4. Left: A 4-dimensional discrete K-net, which at the
same time is a 2D lattice of 2-dimensional K-nets, where each is
in the Bäcklund transform relation with its neighbors. The thin
dashed lines constitute a Bennett 12-bar linkage. Right: A K-net
with rotational symmetry made from string (crab net).

The K-net property is d-dimensional consistent for d ≥ 3 (i.e., integrable): Any
choice of unit normal vectors

n(i1, 0, . . . , 0), n(0, i1, . . . , 0), . . . , n(0, 0, . . . , id) (d ≥ 2)

can be extended to a Chebyshev net in the unit sphere, and define a K-net via the
formulas given above.

3.3. Bäcklund transformation. Two smooth K-surfaces x, x(1), both par-
ametrized such that parameter lines have unit speed, are Bäcklund transforms of
each other, if the distance ‖x(u) − x(1)(u)‖ of corresponding points is constant,
and if the line segment x(u), x(1)(u) is tangent to both surfaces in its endpoints.
For a discrete surface x(i1, i2) and its transform x(1)(i1, i2), the definition is liter-
ally the same, since even discrete K-nets possess tangent planes. Furthermore, it
is clear from the definition that a K-net and its transform together constitute a
3-dimensional K-net.

Existence of 4D K-nets and the fact that they are determined by initial values
(Theorem 3.2) shows Bianchi permutability of Bäcklund transforms, see Fig. 4.

3.4. Mechanisms based on skew parallelograms. The results on K-nets
have as an immediate consequence the following remarkable fact which was first
observed, at least in part, more than 100 years ago by G. T. Bennett [Ben14]:

Think of the K-net defined by normal vector data n(i1, 0) and n(0, i2). De-
forming these initial values such that the angle between successive normal vectors
remains constant yields a net n(i1, i2) of normal vectors where the angle between
neighbors remains constant. Computing the K-net from normal vector data yields
a deformation of x(i1, i2) such that both edge lengths and the twist along an edge
remains constant.
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Already a single quadrilateral is a nontrivial mechanism, called Bennett’s four-
bar mechanism or Bennett’s isogram [Ben14]. An elementary cube in a 3-dimensional
K-net is Bennett’s 12-bar mechanism, see also Figure 4.

It is worth noting that certain K-nets can be manufactured rather easily, namely
as equilibrium positions of fishing nets with rotational symmetry, see the crab net
shown by Figure 4.

3.5. The sine-Gordon equation. By Gauss’ theorema egregium, the Gauss-
ian curvature K of a surface x(u1, u2) can be computed from the coefficient func-
tions E = 〈∂1x, ∂1x〉, F = 〈∂1x, ∂2x〉 and G = 〈∂2x, ∂2x〉 of the first fundamental
form. Francesco Brioschi’s formula for Gaussian curvature says that∣∣∣∣∣∣
−∂22E + 2∂12F − ∂11G ∂1E 2∂1F − ∂2E

2∂2F − ∂1G 2E 2F
∂2G 2F 2G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 ∂2E ∂1G
∂2E 2E 2F
∂1G 2F 2G

∣∣∣∣∣∣ = 8(EG−F 2)2K.

The unit speed (Chebyshev) property is expressed as E = G = 1, and with the
angle φ(u1, u2) between parameter lines we have F = cosφ. Brioschi’s formula
yields ∂12φ(u1, u2) = −K(u1, u2) · sinφ(u1, u2). In the case of K-surfaces, it is no
loss of generality to assume K = −1, so

∂12φ = sinφ.(13)

The meaning of this sine-Gordon equation equation in terms of the intrinsic geom-
etry of a surface is this: If a surface is parametrized such that parameter lines are
traversed with unit speed, and the angle between parameter lines evolves according
to the sine-Gordon equation, then the surface has constant Gaussian curvature −1.

Note that Eqns. (10)+(13) constitute a purely intrinsic characterization of sur-
faces with K = −1, while Eqns. (10)+(7) provide an extrinsic characterization.

3.6. Discrete sine-Gordon equation. Integrable equations. A discrete
K-surface where all edge lengths are equal to ε is the most direct analogue of
a smooth surface parametrized by unit speed with Gaussian curvature −1. The
evolution of the angle φ enclosed by edges xx1 and xx2 can be shown to obey the
Hirota equation

sin
φ12 − φ1 − φ2 + φ

4
=
ε2

4
sin

φ12 + φ1 + φ2 + φ

4
.(14)

In these lecture notes we are not able to discuss the term integrability in a systematic
manner, we refer to [BS09, §6] instead. We only mention some salient facts:
• integrable equations turn out to be closely related with multidimensionally

consistent geometric properties of nets;
• discrete nets are easier to treat than continuous ones, in particular the special

role of transformations disappears. The smooth case is obtained from the discrete
case by a limit process;
• typical properties of integrable systems (Bäcklund transforms, zero curvature

representations, . . . ) are a consequence of multidimensional consistency.

4. Applications: computing minimal surfaces

There is a nice version of discrete minimal surfaces which connects an analytic
approach with discrete geometry and circle patterns. It is also capable of solving
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a significant problem, namely computing the shape of a minimal surface from the
combinatorics of its principal curve network [BHS06].

4.1. Isothermic surfaces and their duals. Isothermic surfaces represent a
classical topic of differential geometry. Informally they are defined by the condi-
tion that their infinitesimal quadrilaterals are flat squares. Certain surface classes,
including the minimal surfaces, admit an isothermic parametrization. It is a bit of
a mystery why certain classes of surfaces have this property. For a good overview
see [Bur06].

Theorem 4.1. An isothermic surface x : U ⊆ R2 → R3, characterized by the
condition that it is a conformal curvature-line parametrization, i.e.,

‖∂1x‖ = ‖∂2x‖ = s, 〈∂1x, ∂2x〉 = 0, ∂12x ∈ span(∂1x, ∂2x),

with s : U → R+, has a Christoffel-dual surface x∗ defined by

∂1x
∗ =

1

s2
∂1x ∂2x

∗ = − 1

s2
∂2x.(15)

x∗ is again isothermic, with ‖∂jx∗‖ = 1/s.

Proof. We have ∂12x = a∂1x + b∂2x, for certain coefficient functions a, b.
Further, ∂2(s2) = 2 〈∂1x, ∂12x〉 = 2 〈∂1x, a∂1x+ b∂2x〉 = 2as2. Differentiating ∂1x

∗

yields

∂2(∂1x
∗) = −∂2(s2)

s4
∂1x+

1

s2
∂12x = −2a

s2
∂1 +

1

s2
(a∂1x+ b∂2x) =

1

s2
(b∂2x− a∂1x).

For ∂1(∂2x
∗) an analogous computation yields the same result, so x∗ exists. Obvi-

ously, x∗ fulfills the isothermicity conditions. �

The Christoffel transformation is particularly interesting for minimal surfaces,
since they admit isothermic parameters, and they are Christoffel-dual to their own
unit normal vector field (which is then a conformal parametrization of the unit
sphere). Conversely, any conformal parametrization of the unit sphere by Christoffel
duality is converted into a minimal surface. If the unit sphere is identified with
C ∪ {∞} by stereographic projection, and the definition of the Christoffel dual is
written as an integral, this yields the Weierstrass representation of minimal surfaces.

Some parts of this relationship are easy to show. E.g. if x is a conformal
parametrization of the unit sphere, then x is isothermic. The common unit normal
vector field of x and the Christoffel dual x∗ is furnished by x itself. Compute the
principal curvatures of x∗:

κ1 =
∂1x

∂1x∗
= s2, κ2 =

∂2x

bd2x∗
= −s2.

i.e., x∗ is a minimal surface. We also see how the speed of parametrization (which
is s) is related to the values of the principal curvatures.

4.2. Discrete s-isothermic surfaces. Finding the “right” discretization of
isothermic surfaces is an important topic in discrete differential geometry. The dis-
cretization shown here is one example of several – it is selected because of its success
in solving a continuous problem by discretization. We start this discussion with a
remarkable result on polyhedra. It can be seen as a discrete version of the Koebe
uniformization theorem in the genus 0 case, and it can be made computationally
efficient [Sech07].
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c(f)

S2

Figure 5. A Koebe polyhedron has edges tangent to a sphere.
The orthogonal circle pattern defined by this polyhedron consists
of the incircles of faces, and the circles of tangency of cones whose
vertex is a vertex of the polyhedron. The vertex-centered sphere
used in the definition of an s-isothermic surface is also shown.

Theorem 4.2. For each convex polyhedron there is a combinatorially equivalent
convex “Koebe” polyhedron whose edges are tangent to the unit sphere. It becomes
unique up to Euclidean transformations if we require that its center of mass equals
0, otherwise it is unique only up to Möbius transforms (i.e., up to projective auto-
morphisms of the unit sphere).

Each Koebe polyhedron has two associated circle packings, see Fig. 5. System
(i) arises by intersecting the faces’ planes with the sphere; System (ii) arises in
a dual way as the circles of tangency of cones whose vertex is a vertex of the
polyhedron. System (ii) can also be replaced by vertex-centered spheres, showing
that a Koebe polyhedron fulfills the definition of a discrete s-isothermic surface, see
Fig. 6.

Definition 4.3. A polyhedral surface (in particular a discrete conjugate net)
is s-isothermic, if the following conditions are fulfilled.

• Every face f contains an incircle c(f), every vertex v is the center of a
sphere S(v).

Figure 6. An s-isothermic surface is defined as a circle/sphere ar-
rangement where circles (green) touch circles, spheres (blue) touch
spheres, and circles orthogonally intersect spheres. This example
is a discrete Enneper surface (image courtesy T. Hoffmann).
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Figure 7. Attempting to dualize a piece of Koebe polyhedron
where one face has odd valence. The dual of the triangle does not
close up (we cannot even assign labels +©,−© to edges in a consistent
manner). However, if the given discrete surface is seen as a discrete
branched covering, with the triangle actually being a hexagon, the
dual surface will close after the original one is traversed twice (im-
ages courtesy B. Springborn).

• Every edge e contains a point T (e), such that:
(*) v ∈ e =⇒ S(v) intersects e orthogonally in T (e)
(*) e ⊂ f =⇒ c(f) touches e in T (e)

• Vertices have degree four, and faces have even degree.

If in addition the surface is part of a Koebe polyhedron, i.e., its edges are tangent
to S2, then we regard it as a discrete-conformal parametrization of S2.

4.3. Dualizing s-isothermic surfaces. Consider a face f = (v0, . . . , vn−1)
of an s-isothermic surface with n even. Assume that the incircle of this face has
radius ρf . The edge vivi+1 touches the incircle in the point qi. Then the dual face
f∗ likewise has an incircle of radius ρf∗ = 1/ρf , and the new contact points q∗i are
defined by

q0

q1 v0
v1

v2 v3

−©

−©
+©+© q∗0

v∗0v∗1 q∗1

v∗2
v∗3

q∗i = (−1)i
qi
ρ2
f

(16)

It follows that the edges of the dual and primal polygon are related by

p∗j − p∗j+1 = (−1)j
1

rjrj+1
(pi − pi+1), where rj = ‖vj − qj‖ = ‖vj − qj+1‖.(17)

The values rj are the radii of the vertex-centered spheres which occur in the def-
inition of an s-isothermic surface. The proof is an exercise in complex numbers.
Similarly, one can show that the subdivision of the faces into quads as in (16) yields
corresponding discrete surfaces x(i1, i2) and x∗(i1, i2) where

∆x∗1 =
1

‖∆x1‖2
∆x1, ∆x∗2 = − 1

‖∆x2‖2
∆x2.(18)

This is completely analogous to the smooth case of (15).
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For any given s-isothermic surface, we now assign labels +© and −© to all edges,
such that for each face, the cycle of edges is assigned labels +©, −©, +©, −©, . . . in an
alternating way, indicating if the factor +1 or −1 is to be used in (16). By (17), the
edge lengths of dual edges are independent of the face they are contained in. An
interior angle αv,f at the vertex v in the face f corresponds to the α∗v∗,f∗ = π−αv,f
in the dual face, so the angle sum around the vertex v∗ is∑

f∗3v∗
α∗v∗,f∗ =

∑
f3v

(π − αv,f ) = (deg(v)− 2)π = 2π.

This shows that a discrete s-isothermic surface can be dualized.

Definition 4.4. A discrete s-isothermic surface is minimal, if its dual is spher-
ical, i.e., is part of a Koebe polyhedron.

[BHS06] discusses how to compute the shape of a minimal surface from the
combinatorics of its network of principal curvatures lines. One starts by comput-
ing a Koebe polyhedron with the desired combinatorics, and dualizes, see Fig. 7.
One can even show convergence to smooth minimal surface, by using the fact that
correspondences between combinatorially equivalent circle packings can be shown
to converge to conformal mappings [HS93].

4.4. Curvatures of discrete surfaces. Discrete surfaces have been assigned
curvatures in different ways. E.g. the variational definition of the mean curvature

vector field ~H as the gradient of the area functional leads to cotangent formula for
mean curvature of simplicial surfaces. Another approach uses the Steiner formula:
A surface in R3, with unit normal vector n, has constant-distance offset surfaces
where a point p of the original surface moves to p + tn(p). Surface area changes
according to

At =

∫
(1− 2Ht+Kt2) dA,(19)

where dA refers to the canonical surface area measure, andH, K are mean curvature
and Gaussian curvature, respectively.

[PLW+07, BPW10] proposed to use the same principle for a polyhedral sur-
face (V,E, F ) equipped with a polyhedral Gauss image (σ(V ), σ(E), σ(F )) (i.e.,
normal vector field), such that corresponding faces of surface and Gauss image are
parallel. An example is furnished by the s-isothermic minimal surfaces and the
corresponding Koebe polyhedron. We define a constant-distance offset (V t, Et, F t)
by vertices

vt = v + tσ(v).

The oriented area of closed polygon f = (v0, . . . , vn−1) in R2 is a quadratic form
A(f) with associated symmetric bilinear form A(f, g),

A(f) =
1

2

∑n−1

i=0
det(vi, vi+1), A(f, g) =

1

2
(A(f + g)−A(f)−A(g))

(Leibniz’ sector formula). A(f, g) is called the oriented mixed area of f, g. Then
the area of a face f t ∈ F t is given by

A(f t) = A(f) + 2tA(f, σ(f)) + t2A(σ(f)).(20)
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Comparing (19) with (20) leads to the definition of a mean curvature H and a
Gaussian curvature K of a face f :

H(f) = −A(f, σ(f))

A(f)
, K(f) = −A(σ(f)

A(f)
.(21)

With this definition it is not difficult to compute the mean curvature of s-isothermic
surfaces: it turns out to be zero. The considerations above have been extended to
more general surface classes by [HSFW17]. E.g the discrete K-surfaces indeed
enjoy the property that the Gaussian curvature equals −1.

5. Applications: freeform architecture

With computer-aided design, it has become rather easy for professionals to de-
sign free forms in architecture, but building them is another matter. The geometric
questions which arise in this context have a rich connection to discrete differential
geometry. Recent surveys are [PW16, PEVW15]. Examples of specific geometric
issues in the context of freeform architecture are the following.

• Steel-glass constructions often are discrete surfaces with flat faces, because
of the glass panels that are put there. For surfaces with quadrilateral faces, the
planarity requirement is a nontrivial side-condition. Another issue with steel con-
structions is the manner of intersection of the beams in nodes. We discuss this
topic below, see also [LPW+06, PLW+07].
• Freeform skins might be required to be at constant distance from each other,

or a steel-glass construction might be required to be of constant thickness. This
topic leads to circular nets, conical nets, and even nets which are edgewise parallel
to a Koebe polyhedron, depending on the question how distances are measured
(between vertices, or faces, or edges), see [PLW+07].
• Developable surfaces occur in bent glass and in curved beams (whose sides are

made by bending flat pieces of steel). A sequence of developables is a semidiscrete
conjugate net, a viewpoint which has been exploited by [LPW+06, PSB+08].
• The differential geometry of manifolds in line space, and discrete submanifolds

of line space has been used by [WJB+13] to study lighting and shading.
• Circle packings and discrete uniformization turn up in the question of regular

patterns, in particular hexagonal patterns [SHWP09].
• Self-supporting surfaces like brick vaults and their polyhedral Airy poten-

tial surface are related to isotropic geometry and curvatures [VHWP12]. A dis-
crete stress state and corresponding polyhedral Airy potential is also relevant for
material-minimizing structures [PKWP17].

5.1. Meshes. Torsion-free support structures. Here we discuss briefly
some topics from the list which have to do with discrete parametric surfaces. In
order to describe structures from straight or curved beams, with or without panels
covering the faces, we start with the combinatorics. A mesh (V,E, F ) consists of
a graph (V,E), where individual edge cycles are designated as faces f ∈ F . This
has to be done in such a way that the complex glued from points (corresponding
to vertices), line segments (corresponding to edges) and disks (one for each face)
is a topological manifold. In a geometric realization of the connectivity, edges are
realized as line segments or as curves. Faces are filled by planar or non-planar
surfaces.
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Figure 8. This torsion-free support structure (image courtesy
Evolute GmbH) guides members and nodes in the outer hull of
the Yas Marina hotel in Abu Dhabi, so that members have a nice
intersection in each node (at right, image courtesy Waagner-Biro
Steel and Glass). Note that the faces of this mesh are not planar.

Many freeform architectural structures can be modelled by means of meshes,
see e.g. Figure 8 for a mesh where faces are not filled in, but edges are represented
by straight beams and vertices by connectors between the individual beams.

If faces are combinatorial triangles, resp. quads or hexagons, we speak of a
triangle mesh, resp. quad mesh or hexagonal mesh. Terminology is often sloppy
and one applies the term quad mesh or hex mesh also in cases where most faces
are quads, or most are hexagons. The discrete parametric surfaces mapping from
Z2 to R3 are quad meshes in a natural way.

Definition 5.1. A torsion-free support structure associated to a mesh (V,E, F )
with straight edges is an assignment of a line `(v) to each vertex v ∈ V and a
plane π(e) to each edge e ∈ E, such that v ∈ e =⇒ `(v) ⊂ π(e) (plus certain
nondegeneracy conditions).

If the edges of the mesh are curves, π(e) is a developable surface containing the
edge.

The relevance of a torsion-free support structure is that straight beams in a
steel construction can be aligned with the planes π(e), and the symmetry planes of
beams nicely intersect in the line `(v), whenever beams come together in a node,
see Fig. 8. Such an intersection of beams is called torsion-free. If the intersection
is not torsion-free, and beams intersect anyhow, the intersection is complicated to
manufacture, see Fig. 9. However, if the intersection is torsion-free, one can simply
use a cylindrical node element and connect the beams to it.

Proposition 5.2. A properly connected triangle mesh has only trivial support
structures, where all elements pass through a single center z: for all v ∈ V, e ∈ E
we have `(v) = v ∨ z and π(e) = e ∨ z.

Proof. In projective space, and ignoring degeneracies, we argue as follows. In
a face f = vivjvk, we have `(vi) = π(vivj) ∩ π(vivk), and similar for `(vj), `(vk).
Thus, the point z(f) = π(vivj) ∩ π(vivk) ∩ π(vjvk) lies on all lines `(vi), `(vj),
`(vk). If f ′ = (vivjvl) is a neighbor face, then z(f) = `(vi) ∩ `(vj) = z(f ′). By
connectedness, z(f) is the same point for all faces f ∈ F . �

This result is one reason why quad meshes are attractive for steel-glass con-
structions. Unfortunately, imposing planarity of faces on quad meshes is nontrivial.
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Figure 9. Left: A curved support structure (Eiffel tower pavil-
ions, Paris. Image Evolute GmbH, 2010). Right: An intersection
of beams which does not follow a torsion-free support structure
(courtesy Waagner Biro Steel and Glass).

5.2. The design dilemma. When using mathematical methods in an artistic
context, one faces a problem which is not known from applications in the natural
sciences: It is usually not desirable that Mathematics yields a definite answer to
a certain question. We illustrate this by means of torsion-free support structures:
Such a structure either consists of developable surfaces, or of discrete developables
following the edges of the mesh. If they are to be orthogonal to the reference surface,
like in the case of Figure 9, left, then they must follow the surface’s principal
curvature lines, cf. the discussion at the end of §2. Since the principal curvature
lines are determined by the reference surface, there is no longer any design freedom
for the beams except perhaps their spacing. Such a situation, which amounts to
a restriction of the artist’s freedom of expression, is unacceptable to the designer.
In the case of the Eiffel tower pavilions, design freedom was restored by the fact
that small changes to the design surface can cause big changes in the network of
principal curvature lines. In this way it was possible to achieve the desired layout
of beams by only minimally changing the reference surface.

5.3. Meshes with planar faces – conjugate nets. The design of quadri-
lateral meshes with planar faces was among the first topics where a connection
between freeform architecture and discrete differential geometry was established
[LPW+06]. If the mesh under consideration has the visual appearance of a smooth
network of curves on a smooth surface, then such a quad mesh has mostly regu-
lar combinatorics and is therefore a conjugate net which approximates a conjugate
curve network, see Fig. 2. If in addition to conjugacy we add orthogonality of
curves, we have the principal network. In fact, any conjugate network useful for
deriving a quad mesh from it is close to principal, which is another instance of the
design dilemma mentioned above. Since the reference shape and a conjugate net on
it cannot be designed separately, there are very few instances of such meshes which
serve as basis of actual building skins, and most of those have been generated by a
simple process like translating one polygon along another one, see Fig. 10.
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Figure 10. This quad mesh with parallelogram faces has been
constructed by parallel-translating a polygon along another poly-
gon (Hippo house, Berlin Zoo. Engineering by Schlaich Berger-
mann & Partners).

5.4. Constant-distance offsets. In the context of meshes with planar faces,
a natural question is the existence of another mesh which is combinatorially equiva-
lent and which is at constant distance from the first one. One can consider face-face
distances, or edge-edge distances, or vertex-vertex distancesconstant. In order to
treat these cases in an uniform manner, we first define parallelity of meshes:

Definition 5.3. Consider combinatorially equivalent meshes (V,E, F ) and
(V ′, E′, F ′) with straight edges and planar faces. They are parallel, if corresponding
edges of E resp. E′ lie in parallel lines, and corresponding faces of F resp. F ′ lie
in parallel planes (details regarding nondegeneracy have been omitted).

A conjugate net and its parallel net together constitute a 3D conjugate net. It
is not difficult to show the following [PLW+07]:
• If (V ′, E′, F ′) is parallel to (V,E, F ), then a torsion-free support structure

is defined by `(v) = v ∨ v′ and π(e) = e ∨ e′, where v, v′ and e, e′ are pairs of
corresponding vertices resp. edges. In the simply connected case, a torsion-free
support structure also implies existence of parallel meshes
• Parallel meshes which are at constant vertex-vertex distance d in a nontrivial

way are circular. This is because we can construct a third mesh by computing
vertices according to v′′ = (v′ − v)/d, which is inscribed to the unit sphere and
has planar faces, so it is circular. For a quadrilateral, circularity is expressed via
the angles between edges only, so the two meshes we start with inherit the circular
property.

These two statements show that conjugate nets and circular nets we studied in
the beginning, have actual applications in a field which generally was not known
for using much applied Mathematics at all, namely the design of freeform skins for
architecture.
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