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Schedule

8am—8:30am | Introduction & Overview

11:10am—-12:10pm | Discrete Parametric Surfaces I

9:30am—9:50am | (break)

1:30pm-2:30pm | Discrete Parametric Surfaces II
10:50am~-11:10am | (break)

8:30am-9:30am | Discrete Laplace Operators I

12:10pm-1:30pm | (lunch)
9:50-10:50am | Discrete Laplace Operators II
2:30pm-3:30pm | (free time)
3:30pm-5:00pm | Demo Session

DAY 1

8:00am-9:00am | Discrete Mappings |
9:00am—9:20am | (break)
9:20am-10:20am | Discrete Mappings 11
10:20am—-10:40am | (break)
10:40am—-11:40am | Discrete Conformal Geometry I
11:40am-1:00pm | (lunch)
1:00pm—-2:00pm | Discrete Conformal Geometry II
2:00pm-2:20pm | (break)
2:20pm-3:20pm | Optimal Transport on Discrete Domains I
3:20pm-3:50pm | (break)
3:50pm—4:50pm | Optimal Transport on Discrete Domains II
4:50pm-5:00pm | Wrap-up

DAY 2




Short Course Speakers

Johannes Wallner (TU Graz) Max Wardetzky (Gottingen)
Discrete Parametric Surfaces Discrete Laplace Operators

Yaron Lipman(eizmann) “Keenan Crane (Carnegie Mellon) ]usti Solomon (MIT)

Discrete Mappings Discrete Conformal Geometry Discrete Optimal Transport



Demo Session

e Goal: give participants hands-on experience w/ DDG algorithms
e Implement (in web-based framework):
® discrete curvature
® discrete Laplace-Beltrami
e Experiment:
e geodesic distance
* direction fields

e conformal mapping




Reading Material

Notes for AMS Short Course on
Discrete Differential Geometry
(ROUGH DRAFT)

Keenan Crane, Yaron Lipman,
Justin Solomon, Joharnes Wallner, Max Wardeszky

December L1, 2017

WARNING: This document is a rough drzf, to be distributed to participants
at the AMS Short Course on Discrete Differential Gecmetry in January, 2018.
There may be sedous errors or omissions, and some sections may no: yet be
complete.
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Short Course Notes

COMMUNICATION

A Glimpse into Discrete
Differential Geometry

Keenan Crane and Max Wardetzky

EDITOR'S NOTE The orgenizers of the two day AMS
Short Course on Discrete Differentlal Geomesty have
landly agreed to provide this mtroduction to the
subjact, IThe AMS Short Course muns In conjuncrion
with the 2018 Join: Mathematics Meetings.

The emerging fisld of discrete differendal geometry (DDE)
studies discrate anzlogues of smooth geomeatric objects,
providiog an essenlial link belwesn analylical descrip-
tions end computation. In recent years it hos uncarthed o
rich variely of new perspectives on applied problems io
computatdonzl anatomy/biology, computadonzl mechan-
s, industrial desipgn, compulationzl archileclure, and
digital geometry processing at large. '1he hasic philoso-
phy of disvrete differential peometry is thal a discrele
objesct like a polyhedron is not merely an approximation
of a smwoth ane, but rather a differential geometric objoct
in 1ts own right. In conmrasst to traditional numerical anal-
yais which feeuses on climinoling epproximalion eroor
in the limit of refinemsant (¢.g.. by taking smazller and
smaller finite difterences), DDG places an emphasis o
the so-called “mimetic” viewpoint, where key propertes
el & system are presenved exectly, independest of how
larpe ur small the elements ol a mesh might e, Just
as algorithms for simulating mechanical systems might
sesk To exactly preserve physical Invariants such as total
energy or momentum, structure-praserving modcels of

Koerwan Ceune 1y wssisiand professor of wompaler stienee ol
Cameate Melloyw Drveraty, Hie eanail address is kncraneccs
«CAOLL 20U

Mex Wardeleky i professor of mathemediey at Uriveesily of dt-
tingen, HG el ikidress swardetzaydmath. uni coettingen
-de,

Far parmisstoo ro vepwring thic article, plasse comtact:
reprint-gernTssiandans.ong.

DOL artpy/Adxdotongs 1001080,/ not 576

Communicaled by Joel Hasy

Figure 1. Discrete differential geomeltry reimagines
classical idwas from differential gpometry without
reference to differential calculus. For instance,
surfaces parameterized by principal curvature lines
are replaced by meshes made of clrcular
quadrilaterals (top left), the maximum principle
obeyed by harmonic functions Is expressed via
conditions on the geometry of a triangulation (top
right), and complex-analytic functions can be
replaced by so called circle packings that preserve
tangency relationships (bortom). These discrete
surrogates provide a bridge between geometry and
campulation, while at the samme time preserving
important structural properties and theorems.

discrete geometry seck to oxactly preserve global gen
melric invarients such as total curvature, More broadly,
123G Tocrnzes an the discretization of ohjecrs that da not
naturally tall under the umbrella of wraditional numerical
anzlysis, This arlicle provides an overview ol same of e

themes in DDG.

Novesmeew 2017 NOUTICES OF THE AMS 1153

AMS Notices Article




Want to Know More?

e Several books:

o Discrete Differential Geometry (2008)

e DDG: Integrable Structure (2008)

e Advances in Discrete Differential Geometry (2016)

* Architectural Geometry (2007) e —

e CMU Course: (http:/ / geometry.cs.cmu.edu/ddg)

Advances in
Discrete Differential
= Geometry
XTI

* More links at Discrete Differential Geometry Forum:

; Discrete
. Differential Geometry

http:/ /ddg.cs.columbia.edu



http://geometry.cs.cmu.edu/ddg
http://ddg.cs.columbia.edu
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What Is Discrete Differential Geometry?

Basic idea: re-imagine ideas from classical differential geometry,
without reference to differential calculus.




Geometry and Finitism

e Long and contentious history of infinity in mathematics”

e Pythagorists viewed infinity as evil!

o Later (~19th c.) learned to appreciate utility of infinity...

e Can still have bizzare consequences (e.¢., Banach-Tarski)

e Finitists: only “real” objects are those w/ finite descriptions

 Computer science: finitism is a just practical matter...
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“Great series: BBC Radio 4 — A History of the Infinite



What 1s Differential Geometry?

e Language for talking about local properties of shape

* How fast are we traveling along a curve?
e How much does the surface bend at a point?
* etc.
e ...and their connection to global properties of shape

e So-called “local-global” relationships.

e Modern language of geometry, physics, statistics, ...

e Profound impact on scientific & industrial development in 20th century



What 1s Discrete Differential Geometry?

e Also a language describing local properties of shape

o [nfinity no longer allowed!

* No longer talk about derivatives, infinitesimals. ..

e Everything expressed in terms of lengths, angles...

Ny N,

. s ' e g
* Surprisingly little is lost! %\4 ) \/N; |
e Faithfully captures many fundamental ideas »~" % _ ./ ™

3

. o N P4
* A modern language for geometric computing

P3

e Increasing impact on science & technology in 21st century...



Applications of DDG: Geometry Processing
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Shape Analysi

Applications of DDG
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Applications of DDG: Numerical Simulat




Applications of DDG: Architecture & Design
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Discrete Differential Geometry

CONTINUOUS DISCRETE

Discretize



Discrete Differential Geometry — Grand Vision

GRAND VISION

Translate ditferential geometry into a language

suitable tor computation.

Jit .‘Wécl'drlal o ,“"f /f"’""“féﬁ
r{m(Cf— ¥~ Wn w (jw,,.‘yvm.. =0 Qafﬁﬁag,b ;
h!m wf dmb vﬁfuf [ CO 701 TN "b‘m"
AL ga e (rce it j{uﬁ“my ﬁtr mf:m
idawm | Anbruifef miln;:tm iwﬁ‘mhf{{ M}fvfﬂb_;
R4% u Ef MO my Jo
ifh;’:wz; ;#,M TERL LY r abrtros *f‘“""ﬁﬁ
L i FET 1A on Crmnkefiwaiy W;M{fﬁmd al 7§
(*L”\H Ui W,Gp(p/:(w op1éa r urro:

W{‘J(’ﬁ]ﬁ‘x[&x‘x] ] g% [ Ix
CUf R w[qmdg;k’y wit ) Eunldy wiy |
l-u;x;.uxfx :

Q{EE&M W‘f" W"’ﬁuujdﬂ

M‘T‘”W

Al 'X XIXI”‘"X Ay

(N .
(U W ( L L;f“:-t'fc gr«g;: :0; J%‘I;w,n'/u[.«’rrw “ml%

: At A
Vidm x lt'x‘ rt A%’-;»-!Mw..a‘un” 1
rx‘ixﬁx‘lix-ﬂﬁ v ‘w 'rw X Cxpanisy

Sl e
7o Y ! '\h’-,ﬂ

o Cw i M ukj q O’vY

bl ol B ;; B ,xf::‘, VN

w//

—C‘-
: ’
ﬁ—!
»
.

!
1
'

]

-—

'

!
i

'y

’ ‘
. '. “ 5 ‘q‘ ‘
v
. 4
T —— ~
8*’“‘
- .

‘
—

and
~

z

F

N



Discrete Differential Geometry — Grand Vision

GRAND VISION

Translate ditferential geometry into a language

suitable for modeling discrete phenomena.
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How can we get there?

A common “game” is played in DDG to obtain discrete definitions:

1.Write down several equivalent definitions in the smooth setting.
2. Apply each smooth definition to an object in the discrete setting.

3. Determine which properties are captured by each resulting
inequivalent discrete definition.

One often encounters a so-called “no free lunch” scenario: no single
discrete definition captures all properties of its smooth counterpart.



Example: Discrete Curvature of Plane Curoves

* Toy example: curvature of plane curves
e Roughly speaking: “how much it bends”
e First give several equivalent smooth definitions
e Then play The Game to get different discrete definitions
e Will discover that no single definition is “best”
* Pick the definition best suited to the application
* Very brief overview

e Covered in more detail in Notices article



Curvature of a Curve —Motivation




Curoves in the Plane

e In the smooth setting, a parameterized curve is a map™ taking each point
in an interval [0,L] of the real line to some point in the plane R*:

v:]0,L] = R?

*Continuous, differentiable, smooth...



Curvature of a Smooth Curve

e Informally, curvature describes “how much a curve bends”

e More formally, the curvature of an arc-length parameterized plane
curve can be expressed as the rate of change in the tangent”

k(s) == (N(s), £ T(s))

= (N(s), 427(5)) \/

KEY IDEA

Curvature is a second derioative.

*Here the angle brackets denote the usual dot product, i.e., ((a,b), (x,vy)) := ax + by.

N(s)




Discrete Curves in the Plane

* A discrete curve is a piecewise linear parameterized curve, 1.e.,
a sequence of vertices connected by straight line segments:

Shorthand: 7; := v(s;)



Curvature of a Discrete Curve?

KEY IDEA

Curvature is a second derioative.

Can we directly apply this point of view to a discrete curve?
SMOOTH DISCRETE

No! Will get either zero or “c”. Need to think about it another way...



What is Discrete Curvature?

:

Curyaber®is a second dereatiye.

I - 7\77\""\",7 =
—

Can we directly apply this point of view to a discrete curve?
SMOOTH DISCRETE

No! Will get either zero or “~”. Need to think about it another way...



Curvature, Revisited

¢ In the smooth setting, there
are several other equivalent
detinitions of curvature.

* IDEA: perhaps some of these
definitions can be applied
directly to our discrete curve!

e (Due to time, we will
consider just one today;
several others are covered
in the Notices article)

TURNING ANGLE

STEINER FORMULA

[LENGTH VARIATION

OSCULATING CIRCLE




Example: Length Variation

e One way to characterize curvature in smooth setting:

The fastest way to increase the length of a curve 1s to move it
in the normal direction, with speed proportional to curvature.

e Intuition: in flat regions, moving the curve doesn’t change its length;
in curved regions, the change in length (per unit length) is large:

-

T §
N T A T G .,
/< N>

e Discrete curve may not have 2nd derivatives, but certainly has length!

-
-



Length Variation — Smooth

e More formally, consider an arbitrary variation of the curve. Le., suppose
we have another curve* 7 : [0, L] — R“ One can show that

4| _olength(y + ) = — /O (n(s), k(s)N(s)) ds

e Therefore, the motion that most quickly decreases length is 7 = k¥ N.

*Must go to zero at endpoints (i.e., pass through the origin).



Length Variation — Discrete

e Even simpler in the discrete setting: just take the gradient of length
with respect to vertex positions.

* First consider a single line segment:

oD

/ g:: ‘b—&l‘
(e /

e How can we move the point b to most quickly increase its length?

(l®



Length Variation — Discrete

e Gradient of total length L with respect to vertex position is just a sum:

V..L

I

Yi

%':1 ’Yifrl

e Can easily re-express in terms of exterior

angle 6; and angle bisector N;: Vy,L = 2sin(6;/2)N;



Discrete Curvature (Length Variation)

e How does this help us define discrete curvature?

e Recall that in the smooth setting, the gradient of o S —KkN
length is equal to the curvature times the normal. /_,
N

e Hence, our expression for the discrete length
variation provides a definition for the discrete
curvature times the discrete normal. 1

kP N; := 2sin(6;/2)N,



A lale of Four Curvatures

e If we continue this game starting with our four equivalent smooth
definitions, we will get four inequivalent discrete definitions:

K={(N,y")

DISCRETE
KA =0
kB =2sin(6/2)
k¢ =2tan(0/2)
k” =2sin(0)/w

CONTINUOUS y(s) T ./ Yi-1
1—1;/ ‘.
KN Yid / iw;

Which one is the “right” definition of discrete curvature?



Pick the Right ‘Tool for the Job

* Answer: pick the right tool for the job!
e Very rarely one “right” discrete definition
e Each definition plays a role in a different context

e Analogy: in different mechanical problems, we
might care about preserving energy but not
momentum—or momentum, but not energy.

e Where does this kind of trade-off come up with
curvature?




Toy Example: Curvature Flow

e A classic example is curvature flow, where a closed curve
moves in the normal direction with speed proportional

to curvature: g
7v(s,t) =x(s, t)N(s, t)

e Can we construct a discrete curvature flow that
faithfully captures the behavior of the smooth flow?

* Some key properties:
e (ToTAL) Total curvature remains constant throughout the flow.
e (DRIFT) The center of mass does not drift from the origin.
e (ROUND) Up to rescaling, the flow is stationary for circular curves.



Discrete Curvature Floww— No Free Lunch

* We can approximate curvature flow by repeatedly
moving each vertex a little bit in the direction of the

discrete curvature normal: F+1 /
Y, =Y T TK; N;

e But no choice of discrete curvature simultaneously
captures all three properties of the smooth flow™:

2TT y !
@ @ TOTAL DRIFT ROUND
KA v X X

X 4 X
X X v

>

total curvature
XV
xb xbc

>

time drift from center roundness

“In fact, it’s impossible!



Properties of Smooth Curvature

What are other properties of curvature we might like to preserve?

— locality (depends only on a small piece of the curve)

— coordinate invariance (unchanged by rigid rotations & translations)
— topological invariance (for closed loop, integrates to multiple of 2t)
— changes sign under reflections (hence zero for straight lines)

— scaling inverse to scaling of curve (hence goes to « for small circles)

Food for thought: to what degree do such axioms determine a definition?




Coming up next...

e Beyond this “toy” problem, the o free lunch scenario is quite
common in discrete differential geometry.

e E.¢., Whitney-Graustein / Kirchoff analogy for curves;
conservation of energy, momentum, and symplectic form for
conservative time integrators; discrete Laplace operators...

* More generally, The Game played in DDG often leads to new &
unexpected ways of thinking about geometry, and formulating
geometric algorithms. (E.g., faster, simpler, clearer guarantees, ...)

e Will see much more of this as the course continues!



Thanks!
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