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Welcome!



Schedule



Short Course Speakers

Johannes Wallner (TU Graz)
Discrete Parametric Surfaces

Max Wardetzky (Göttingen)
Discrete Laplace Operators

Yaron Lipman (Weizmann)
Discrete Mappings

*Keenan Crane (Carnegie Mellon)
Discrete Conformal Geometry

Justin Solomon (MIT)
Discrete Optimal Transport



Demo Session
• Goal: give participants hands-on experience w/ DDG algorithms
• Implement (in web-based framework):

• discrete curvature
• discrete Laplace-Beltrami

• Experiment:
• geodesic distance
• direction fields
• conformal mapping
• …



Reading Material

Short Course Notes AMS Notices Article



Want to Know More?
• Several books:

• Discrete Differential Geometry (2008)

• DDG: Integrable Structure (2008)

• Advances in Discrete Differential Geometry (2016)

• Architectural Geometry (2007)

• CMU Course: (http://geometry.cs.cmu.edu/ddg)

• More links at Discrete Differential Geometry Forum:

http://ddg.cs.columbia.edu

http://geometry.cs.cmu.edu/ddg
http://ddg.cs.columbia.edu
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What Is Discrete Differential Geometry?
Basic idea: re-imagine ideas from classical differential geometry, 

without reference to differential calculus.



Geometry and Finitism
• Long and contentious history of infinity in mathematics*

• Pythagorists viewed infinity as evil!

• Later (~19th c.) learned to appreciate utility of infinity…
• Can still have bizzare consequences (e.g., Banach-Tarski)

• Finitists: only “real” objects are those w/ finite descriptions

• Computer science: finitism is a just practical matter…

*Great series: BBC Radio 4—A History of the Infinite



• Language for talking about local properties of shape

• How fast are we traveling along a curve?

• How much does the surface bend at a point?

• etc.

• …and their connection to global properties of shape

• So-called “local-global” relationships.

• Modern language of geometry, physics, statistics, …

• Profound impact on scientific & industrial development in 20th century

What is Differential Geometry?



• Also a language describing local properties of shape

• Infinity no longer allowed!

• No longer talk about derivatives, infinitesimals…

• Everything expressed in terms of lengths, angles…

• Surprisingly little is lost!

• Faithfully captures many fundamental ideas

• A modern language for geometric computing

• Increasing impact on science & technology in 21st century…

What is Discrete Differential Geometry?



Applications of DDG: Geometry Processing



Applications of DDG: Shape Analysis



Applications of DDG: Numerical Simulation



Applications of DDG: Architecture & Design



Applications of DDG: Discrete Models of Nature



Discrete Differential Geometry
CONTINUOUS DISCRETE

Discretize

Homogenize

GEOMETRY



Discrete Differential Geometry—Grand Vision

Translate differential geometry into a language 
suitable for computation.

GRAND VISION



Discrete Differential Geometry—Grand Vision

Translate differential geometry into a language 
suitable for modeling discrete phenomena.

GRAND VISION



How can we get there?
A common “game” is played in DDG to obtain discrete definitions:

One often encounters a so-called “no free lunch” scenario: no single 
discrete definition captures all properties of its smooth counterpart.

1.Write down several equivalent definitions in the smooth setting.

2. Apply each smooth definition to an object in the discrete setting.

3. Determine which properties are captured by each resulting 
inequivalent discrete definition.



Example: Discrete Curvature of Plane Curves
• Toy example: curvature of plane curves

• Roughly speaking: “how much it bends”

• First give several equivalent smooth definitions

• Then play The Game to get different discrete definitions

• Will discover that no single definition is “best”

• Pick the definition best suited to the application

• Very brief overview

• Covered in more detail in Notices article



Curvature of a Curve—Motivation



Curves in the Plane
• In the smooth setting, a parameterized curve is a map* taking each point 

in an interval [0,L] of the real line to some point in the plane       :

*Continuous, differentiable, smooth…



Curvature of a Smooth Curve
• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane 
curve can be expressed as the rate of change in the tangent*

*Here the angle brackets denote the usual dot product, i.e.,                                            .

KEY IDEA

Curvature is a second derivative.



Discrete Curves in the Plane
• A discrete curve is a piecewise linear parameterized curve, i.e., 

a sequence of vertices connected by straight line segments:

Shorthand:



Curvature of a Discrete Curve?

KEY IDEA

Curvature is a second derivative.

SMOOTH DISCRETE

Can we directly apply this point of view to a discrete curve?

No! Will get either zero or “∞”. Need to think about it another way…



What is Discrete Curvature?

KEY IDEA

Curvature is a second derivative.

SMOOTH DISCRETE

No! Will get either zero or “∞”. Need to think about it another way…

Can we directly apply this point of view to a discrete curve?



Curvature, Revisited
• In the smooth setting, there 

are several other equivalent 
definitions of curvature.

• IDEA: perhaps some of these 
definitions can be applied 
directly to our discrete curve!

• (Due to time, we will 
consider just one today; 
several others are covered 
in the Notices article)



Example: Length Variation
• One way to characterize curvature in smooth setting:

The fastest way to increase the length of a curve is to move it 
in the normal direction, with speed proportional to curvature.

• Intuition: in flat regions, moving the curve doesn’t change its length;  
in curved regions, the change in length (per unit length) is large:

• Discrete curve may not have 2nd derivatives, but certainly has length!



Length Variation—Smooth
• More formally, consider an arbitrary variation of the curve.  I.e., suppose 

we have another curve*                             .  One can show that

*Must go to zero at endpoints (i.e., pass through the origin).

• Therefore, the motion that most quickly decreases length is                .



Length Variation—Discrete
• Even simpler in the discrete setting: just take the gradient of length 

with respect to vertex positions.

• First consider a single line segment:

• How can we move the point b to most quickly increase its length?



Length Variation—Discrete
• Gradient of total length L with respect to vertex position is just a sum:

• Can easily re-express in terms of exterior 
angle 𝜃i and angle bisector Ni :



Discrete Curvature (Length Variation)
• How does this help us define discrete curvature?

• Recall that in the smooth setting, the gradient of 
length is equal to the curvature times the normal.

• Hence, our expression for the discrete length 
variation provides a definition for the discrete 
curvature times the discrete normal.



A Tale of Four Curvatures
• If we continue this game starting with our four equivalent smooth 

definitions, we will get four inequivalent discrete definitions:

Which one is the “right” definition of discrete curvature?



Pick the Right Tool for the Job
• Answer: pick the right tool for the job!

• Very rarely one “right” discrete definition

• Each definition plays a role in a different context

• Analogy: in different mechanical problems, we 
might care about preserving energy but not 
momentum—or momentum, but not energy.

• Where does this kind of trade-off come up with 
curvature?



Toy Example: Curvature Flow
• A classic example is curvature flow, where a closed curve 

moves in the normal direction with speed proportional 
to curvature:

• Can we construct a discrete curvature flow that 
faithfully captures the behavior of the smooth flow?

• Some key properties:
• (TOTAL) Total curvature remains constant throughout the flow.
• (DRIFT) The center of mass does not drift from the origin.
• (ROUND) Up to rescaling, the flow is stationary for circular curves.



Discrete Curvature Flow—No Free Lunch
• We can approximate curvature flow by repeatedly 

moving each vertex a little bit in the direction of the 
discrete curvature normal:

• But no choice of discrete curvature simultaneously 
captures all three properties of the smooth flow*:

*In fact, it’s impossible!



Properties of Smooth Curvature
What are other properties of curvature we might like to preserve?

– locality (depends only on a small piece of the curve)
– coordinate invariance (unchanged by rigid rotations & translations)
– topological invariance (for closed loop, integrates to multiple of 2π)
– changes sign under reflections (hence zero for straight lines)
– scaling inverse to scaling of curve (hence goes to ∞ for small circles)
– …

Food for thought: to what degree do such axioms determine a definition?



Coming up next…
• Beyond this “toy” problem, the no free lunch scenario is quite 

common in discrete differential geometry.

• E.g., Whitney-Graustein / Kirchoff analogy for curves; 
conservation of energy, momentum, and symplectic form for 
conservative time integrators; discrete Laplace operators…

• More generally, The Game played in DDG often leads to new & 
unexpected ways of thinking about geometry, and formulating 
geometric algorithms.  (E.g., faster, simpler, clearer guarantees, …)

• Will see much more of this as the course continues!



Thanks!
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