Discrete Parametric Surfaces

Johannes Wallner

Short Course on Discrete Differential Geometry

San Diego, Joint Mathematical Meetings 2018

Overview

- Introduction and Notation
- An integrable 3-system: circular surfaces
- An integrable 2-system: K-surfaces
- Computing minimal surfaces
- Freeform architecture

Part I

Introduction and Notation

Parametric Surfaces

- Surfaces x(u) where $u \in \mathbb{Z}^k$ or $u \in \mathbb{R}^k$ or $u \in \mathbb{Z}^k \times \mathbb{R}^l$
- continuous case, discrete case, mixed case

Parametric Surfaces

- Surfaces x(u) where $u \in \mathbb{Z}^k$ or $u \in \mathbb{R}^k$ or $u \in \mathbb{Z}^k \times \mathbb{R}^l$
- continuous case, discrete case, mixed case

Examples of discrete surfaces

quad meshes in freeform architecture

Examples of discrete surfaces

- various mappings $\mathbb{Z}^k \to \{\text{points}\} \text{ or}$ $\mathbb{Z}^k \to \{\text{spheres}\} \text{ or} \dots$
- Discrete minimal surfaces, discrete cmc surfaces, discrete K-surfaces, etc.

4/60

[images: Tim Hoffmann]

Notation

- discrete parametric surface \cong net
- Right shift of a surface x in the k-th direction is denoted by xk
 Left shift of a surface x in the k-th direction is denoted xk

$$\begin{cases} x_1(k, l) = x(k+1, l) & x_{\bar{1}2} - x_2 - x_{12} \\ x_1(k, l) = x(k, l+1) & x_{\bar{1}} - x - x_1 \\ x_{\bar{1}2} - x_{\bar{2}} - x_{\bar{1}2} \\ x_{\bar{1}2} - x_{\bar{2}} - x_{\bar{1}2} \end{cases}$$

• Differences are used instead of derivatives $\Delta_i x = x_i - x_i$

Surface classes: conjugate surfaces 6/60

• a smooth conjugate surface x(u) has "planar" infinitesimal quads

$$3 \operatorname{vol} \left(\operatorname{c.h.} \left(x(u), x(u_1 + \varepsilon, u_2), x(u_1, u_2 + \varepsilon), x(u_1 + \varepsilon, u_2 + \varepsilon) \right) \right) / \varepsilon^4 \\ = \det(x(u_1 + \varepsilon, u_2) - x(u), x(u_1, u_2 + \varepsilon) - x(u), x(u_1 + \varepsilon, u_2 + \varepsilon) - x(u)) \frac{1}{2\varepsilon^4} \\ \approx \det(\varepsilon \partial_1 x, \varepsilon \partial_2 x, \varepsilon \partial_1 x + \varepsilon \partial_2 x + 2\varepsilon^2 \partial_{12} x) / 2\varepsilon^4 \\ = \det(\partial_1 x, \partial_2, \partial_{12} x) = 0$$

Surface classes: conjugate surfaces 7/60

• a discrete conjugate surface x(u) has planar elementary quads

• there are coefficient functions c^{lk} , c^{kl} s.t. $\Delta_k \Delta_l x = c^{lk} \Delta_k x + c^{kl} \Delta_l x$.

Surface classes: asymptotic surfaces₆₀

Parameter lines are asymptotic, i.e., in every point they indicate the intersection of the saddle-shaped surface with its own tangent plane

 X_2

 $X_{\bar{2}}$

- smooth case: $\partial_{11}x$, $\partial_{22}x \in \text{span}\{\partial_1x, \partial_2\}$.
- discrete case:

x, *x*₁, *x*₁, *x*₂, *x*₂ \in plane *P*(*u*) *x*₁ -- *x*₁ -- *x*₁

Surface classes: principal surfaces 9/60

smooth case: parameter lines are conjugate + orthogonal

Why is circularity "principal"?

- smooth case: principal curves are characterized by developability of the surface formed by normals
- discrete case: normals are circles' axes. Observe developability
 - (convergence can be proved)

Monographs

R. Sauer: Differenzengeometrie, Springer 1970] [A. Bobenko, Yu. Suris: **Discrete Differential** Geometry, AMS 2009]

Robert Sauer Differenzengeometrie

Discrete Differential Geometry Integrable Structure

Alexander I. Bobenko Yuri B. Suris

Graduate Studies in Mathematics

Volume 98

American Mathematical Society

Part II

3-systems

Conjugacy as a 3-system

Generically, a conjugate net $x(u_1, u_2, u_3)$ is uniquely determined by arbitrary initial values $x(0, u_2, u_3)$ and $x(u_1, 0, u_3)$ and $x(u_1, u_2, 0)$.

12/60

Proof is trivial (intersect planes)

Circularity as a 3-system

Generically, a circular net $x(u_1, u_2, u_3)$ is uniquely determined by arbitrary initial values $x(0, u_2, u_3)$ and $x(u_1, 0, u_3)$ and $x(u_1, u_2, 0)$.

13/60

Proof is not trivial (Miquel's theorem)

Reduction of 3-systems

- conjugate nets live in projective geometry
- circular nets live in Möbius geometry
- Oval quadric (sphere) in projective space is a model Möbius geometry — planar sections are circle, projective automorphisms of quadric are Möbius transforms
- conjugate net in the quadric is a circular net

Propagation of Circularity

- Consider a conjugate net $x(u_1, ..., u_n)$ $(n \ge 3)$. In the generic case circularity is implied by circular initial values (i.e., quads containing vertices with $u_1u_2 \cdots u_n = 0$ are circular).
- Proof: Consider a 3-cell with diagonal *x*—*x*₁₂₃ where the quads incident to *x* are circular.
 Miquel ⇒ *x*₁₂₃ exists is intersection of circles. Conjugacy ⇒ *x*₁₂₃ is *already*

determined as intersection of planes.

- Can we construct a conjugate net $x(u_1, u_2, u_3, u_4)$ from conjugate initial values? (quads having a vertex with $u_1u_2u_3u_4 = 0$ are planar)
- Make 3-cubes incident with x conjugate: These are x—x₁₂₃,
 - *x*—*x*₁₂₄, *x*—*x*₁₃₄, and *x*—*x*₂₃₄.
- Now there are four competing ways to find x₁₂₃₄: one for each
 3-cube incident with x₁₂₃₄.

- **Thm.** Conjugacy is an integrable (i.e., 4-consistent) 3-system.
- **Proof** in dimensions \geq 4: Within cube $x_1 x_{1234}$, we have

 $x_{1234} \in \operatorname{span}(x_{12}x_{123}x_{124}) \cap \operatorname{span}(x_{13}x_{132}x_{134}) \cap \operatorname{span}(x_{14}x_{142}x_{143}).$

- Similar expressions for other cubes
- each quad is intersection of two cubes $\implies x_{1234} \in \bigcap_{i=1}^{\emptyset 4} (\text{span}(\ldots))$
- that expression no longer depends on choice of initial 3-cube, q.e.d.

• Lemma. Consider coefficient functions c^{lk} , c^{kl} in a conjugate 3- net defined by $\Delta_k \Delta_l x = c^{lk} \Delta_k x + c^{kl} \Delta_l x$. There is a birational mapping $(c^{12}, c^{21}, c^{23}, c^{32}, c^{31}, c^{13}) \xrightarrow{\phi} (c_3^{12}, c_3^{21}, c_1^{23}, c_1^{32}, c_2^{31}, c_2^{13})$

Proof. Use the "product rule" $\Delta_j(a \cdot b) = a_j \cdot \Delta_j b + \Delta_j a \cdot b$ to expand

$$\begin{split} \Delta_i \Delta_j \Delta_k x &= \Delta_i (c^{kj} \Delta_j x + c^{jk} \Delta_k x) = c_i^{kj} \Delta_i \Delta_j x + \Delta_i c^{kj} \Delta_j x + \cdots \\ &= (c_i^{kj} c^{ji} + c_i^{jk} c^{ki}) \Delta_i x + (c_i^{kj} c^{ij} + \Delta_i c^{kj}) \Delta_j x + (c_i^{jk} c^{ik} + \Delta_i c^{jk}) \Delta_k x. \\ \Delta_j \Delta_k \Delta_i x &= (c_j^{ik} c^{kj} + c_j^{ki} c^{ij}) \Delta_j x + (c_j^{ik} c^{jk} + \Delta_j c^{ik}) \Delta_k x + (c_j^{ki} c^{ji} + \Delta_j c^{ki}) \Delta_i x. \\ \Delta_k \Delta_i \Delta_j x &= (c_k^{ji} c^{ik} + c_k^{ij} c^{jk}) \Delta_k x + (c_k^{ji} c^{ki} + \Delta_k c^{ji}) \Delta_i x + (c_k^{ij} c^{kj} + \Delta_k c^{ij}) \Delta_j x. \end{split}$$

19/60

Permutation invariance of $\Delta_i \Delta_j \Delta_k$ yields linear system for var. $(c_3^{12}, \ldots, c_1^{32})$, namely equations $\Delta_i c^{jk} = c_k^{ij} c^{jk} + c_k^{ji} c^{ik} - c_i^{jk} c^{ik}$ ($i \neq j \neq k \neq i$) valid in the generic case. Matrix inversion \implies desired birational mapping.

- **Thm.** Conjugacy is an integrable (i.e., 4-consistent) 3-system.
- **Proof.** general position and dimension $d \ge 4$: see above.
- Alternative: computation x_{1234} by the birational mapping $(c^{ik}, c^{ki}, c^{ki}, c^{lk}, c^{li}, c^{il}) \xrightarrow{\phi} (c^{ik}_l, c^{ki}_l, c^{ki}_l, c^{lk}_l, c^{li}_k, c^{il}_k)$ which applies to A, A, $w = c^{lk}A$, $w = c^{kl}A$, $w = x^{kl}A$.

which applies to $\Delta_k \Delta_l x = c^{lk} \Delta_k x + c^{kl} \Delta_l x$.

Different computations yield the same result in case *d* ≥ 4 ⇒ identity of rational functions ⇒ same result in *all* cases.

- **Thm.** Circularity is an integrable (i.e., 4-consistent) 3-system.
- **Proof.** Circularity propagates through a conjugate net.
- **Thm.** 4-consistency implies *N*-consistency for $N \ge 4$.
- Proof. (N = 5) Suppose 4-cubes $x x_{1234}, x x_{1235}, \dots x x_{2345}$.

are conjugate \implies each 4-cube

incident with x_{12345} is conjugate, with

a possible conflict regarding x_{12345} .

 There is no conflict because any two 4-cubes share a 3-cube.

3-systems: Summary

 Discrete conjugate surfaces resp. circular surfaces are discrete versions of smooth conjugate surfaces resp. principal surfaces.

- Conjugacy is a 3-system in *d*-dimensional projective space (*d* ≥ 3), and circularity is a 3-system in *d*-dimensional Möbius geometry (*d* ≥ 2).
- Both 3-systems are 4-consistent, i.e., integrable.
- 4-consistency implies *N*-consistency for all $N \ge 4$.

Part III

2-Systems

For a smooth surface $x(u_1, u_2)$ which is asymptotic, i.e.,

 $\partial_{11}x$, $\partial_{22}x \in \operatorname{span}\{\partial_1x, \partial_2\}$,

K = const is characterized by the Chebyshev condition

$$\partial_2 \|\partial_1 x\| = \partial_1 \|\partial_2 x\| = 0$$

discrete n-dim. case:

K-surfaces

$$x, x_k, x_{\overline{k}}, x_l, x_{\overline{l}} \in \text{plane } P(u)$$

 $\Delta_l \|\Delta_k x\| = \Delta_k \|\Delta_l x\| = 0$

K-surfaces

- unit normal vector n(u),
 rotation angle cos $\alpha_k = \langle n, n_k \rangle$
- $\Delta_l \|\Delta_k x\| = 0 \ (l \neq k)$
 - $\Delta_l \langle n, n_k \rangle = 0 \ (l \neq k)$
- x(u₁, u₂) is uniquely determined
 by initial values x(0, u₂) and
 x(u₁, 0) (2-system property)
 - \implies flexible mechanism made of flat twisted members

Multidim. consistency of K-nets

24/60

- Thm. A discrete K-net $x(u_1, ..., u_d)$ has unit normal vectors n which obey $\Delta_l \langle n, n_k \rangle = 0$ ($k \neq l$) (Chebyshev property), besides other conditions (T-net property).
 - The K-net property is *d*-consistent for $d \ge 3$ (i.e., integrable): any choice of initial values

 $n(i_1, 0, ..., 0), n(0, i_1, ..., 0), ..., n(0, 0, ..., i_d) (d \ge 2)$

can be extended to a net of unit normal vectors, and in turn defines a K-surface.

Multidim. consistency of K-nets

- A 3-dimensional K-surface consists of sequential Bäcklund transforms of 2D K-surfaces
- A 4-dimensional K-surface is a lattice of Bäcklund transforms
 (Ouriesitus Bernet's 1000 4 her
- (Curiosity: Bennet's 1906 4-bar and 12-bar mechanisms)

Bäcklund transform

- Existence of Bäcklund transforms for discrete K-surfaces is
 3-consistency
- Bianchi permutability is 4-consistency
- This is true also for smooth K-surfaces
- Discrete theory is master theory, smooth situation obtainable by a limit

The sine-Gordon equation

• If $x(u_1, u_2)$ is smooth surface with

$$\|\partial_1 x\| = \|\partial_2 x\| = 1,$$

the angle between the parameter lines obeys

$$\partial_{12}\phi(u_1, u_2) = -K(u_1, u_2) \cdot \sin \phi(u_1, u_2)$$

If *K* = −1, the angle obeys the sine-Gordon equation:

$$\partial_{12}\phi = \sin\phi.$$

The sine-Gordon equation

• angle ϕ between parameter lines of surface $x(u_1, u_2)$ obeys

 $\partial_{12}\phi = \sin\phi.$

 If x⁽¹⁾ is a Bäcklund transform of x, the angle \$\phi^{(1)}\$ likewise obeys the sine-Gordon equation, and in addition we have

$$\partial_1 \phi^{(1)} = \partial_1 \phi + 2a \sin \frac{\phi + \phi^{(1)}}{2},$$
$$\partial_2 \phi^{(1)} = -\partial_2 \phi + \frac{2}{a} \sin \frac{\phi^{(1)} - \phi}{2}.$$

The sine-Gordon equation

The evolution of the angle between edges in a discrete K-surface, the sine-Gordon equation and the Bäcklund transformation of the sine-Gordon equation are all consequences of the discrete Hirota equation which applies to *d*-dimensional discrete K-surfaces.

29/60

 Important step in the history of discrete differential geometry [Bobenko Pinkall J. Diff. Geom 1996]

Discretization Principles

 smooth objects have several equivalent defining properties, unclear which one should be discretized

- E.g., minimal surfaces are equivalently defined
 - in a variational way (local area minimization)
 - via curvatures (H = 0)
 - explicity, as $x(u, v) = \frac{1}{2} \operatorname{Re} \int_0^{u+iv} (f(z)(1-g(z)^2), if(z)(1+g(z)^2), 2f(z)g(z)) dz$ (Christoffel-dual transformation of a conformal parametrization of S^2)

Discretization Principles

 Good discretizations retain not only one, but several properties of the smooth object

- curious fact: the most interesting discrete versions of surfaces orignally defined by curvatures do not involve curvatures at all.
- Integrability (= consistency) is a major discretization principle

2-systems: Summary

- K-surfaces as a mechanism, as a 2-system, as a geometric incarnation of the sine-Gordon equation
- Transformations of surfaces
 - = higher-dimensional surfaces
- parallel devlopment: integrable discretization of surfaces, and of equations.
- Discretization principles
- Discrete theory is master theory

Part IV

Applications

Computing Minimal Surfaces

Isothermic surfaces and their duals

33/60

Dfn. An isothermic surface $x(u_1, u_2)$ is a conformal principal sur-

face, i.e., $\|\partial_1 x\| = \|\partial_2 x\|$, $\langle \partial_1 x, \partial_2 x \rangle = 0$, $\partial_{12} x \in \text{span}(\partial_1 x, \partial_2 x)$.

• Lemma. An isothermic surface has a Christoffel-dual surface x^* (again isothermic, with $\|\partial_k x^*\| = 1/\|\partial_k x\|$) defined by

$$\partial_j x^* = (-1)^{j-1} \frac{\partial_j x}{\|\partial_k x\|^2}$$

• **Proof.** Check

 $\partial_2(\partial_1 x^*) = \partial_1(\partial_2 x^*).$

Minimal surfaces as Christoffel duals_{4/60}

- Thm. If x(u₁, u₂) is a conformal parametrization of S², it is isothermic and its dual is a minimal surface whose normal vector field is x*. Every minimal surface is obtained in this way.
- Some implications are easy, e.g.

Koebe polyhedra

- Thm. For each convex polyhedron P there is a combinatorially equivalent convex polyhedron P' whose edges are tangent to the unit sphere (*Koebe polyhedron*).
- P' is unique up to
 Möbius transforms,
 exactly one P' has
 its center of mass
 in 0.

Discrete s-isothermic surfaces

- Dfn. S-isothermic surfaces are polyhedra where faces *f* ∈ *F* have incircles *c*(*f*), vertices *v* ∈ *V* are centers of spheres *S*(*v*), and edges *e* ∈ *E* carry points *T*(*e*) s.t.
 - $v \in e \implies S(v)$ intersects *e* orthogonally in the point T(e)
 - $e \subset f \implies c(f)$ touches e in T(e)
 - $\forall v \in V, \deg(v) = 4$. $\forall f \in F, \deg(f)$ even
- Koebe polyhedra are s-isothermic, if ...

Discrete s-isothermic surfaces

- s-isothermic surface is circle-sphere arrangement
- combinatorially regular parts of s-isothermic surfaces (resp. Koebe
 polyhedra) are regarded
 as conformal
 parametrizations

Dualizing polygons

• **Lemma.** A 2*n*-gon with incircle has a dual as follows:

Lemma. Subdivision into quads yields discrete surfaces with

$$\Delta x_1^* = \frac{1}{\|\Delta x_1\|^2} \Delta x_1, \quad \Delta x_2^* = -\frac{1}{\|\Delta x_2\|^2} \Delta x_2.$$

Christoffel duality of surfaces

Prop. An s-isothermic surface has a *Christoffel dual* surface, s.t. corresponding faces are dual in the above sense.

39/60

Proof. Labels \oplus , \bigcirc can be consistently assigned. By elementary geometry, dual lenghts and angles fit locally.

[images: B. Springborn]

Discrete minimal surfaces

- Dfn. Minimal surface is dual of Koebe s-isothermic surface
- **Thm.** Convergence to principal curves of minimal surface
- Proof. via convergence of circle packings to conformal mappings
 [O. Schramm. Circle patterns with the combinatorics of the square grid,

40/60

Duke Math. J. 1997]

[images: B. Springborn]

Computing minimal surf.

minimal surface \Rightarrow principal curves \Rightarrow map tounit sphere \Rightarrow cell decomposition of sphere \Rightarrow Koebe polyhedron \Rightarrow discrete minimal surface

[Bobenko Hoffmann Springborn, Ann. Math. 2006]

[images: B. Springborn]

Constant-distance offset surfaces

- Constant-speed evolution $x^t = x + t \cdot n(x)$ of a smooth surface
- Constant-speed evolution $v^t = v + t \cdot v^*$ of a polyhedral surface M, guided by a combinatorially equivalent surface M^* whose edges/faces are parallel to those of M.
- linear space of polyhedral surfaces parallel to M
- $M^* \approx S^2$

Curvatures of discrete surfaces

- Evolution of smooth surface: $dA^t(x) = (1 2H(x)t + K(x)t^2) dA(x)$.
- Evolution of discrete surface: $A(f^t) = A(f) + 2tA(f, f^*) + t^2A(f^*)$

$$A(f^{t}) = A(f) \left(1 - 2t \frac{A(f, f^{*})}{A(f)} + t^{2} \frac{A(f^{*})}{A(f)} \right)$$

Curvatures of discrete surfaces

- By means of areas and mixed areas, a mean curvature and Gauss curvature can be assigned to the individual faces of a polyhedral surface *M**, if *M* is endowed with an appropriate Gauss image *M**.
- **Lemma** S-isothermic minimal surfaces enjoy H = 0.
- classes of discrete surfaces whose continuous originals are defined by curvatures, now can be equipped with curvatures too.
 [Bobenko Pottmann W Math. Ann 2010]
 [Hoffmann, Sageman-Furnas, Wardetzky IMRN 2015]

Summary

- The duals of Koebe polyhedra are discrete minimal surfaces
- This can be used to compute the shape of minimal surfaces form the combinatorics of their network of principal curvature lines

45/60

 Despite being constructed by means of other discretization principles, classes of discrete surfaces can be endowed with curvatures

Part V

Applications: Freeform Architecture

List of topics

- steel-glass constructions following polyhedral surfaces / singlecurved glass — conjugate surfaces
- torsion-free support structures / self-supporting surfaces / materialminimizing forms — curvatures of discrete surfaces
- regular patterns circle packings, discrete conformal mapping
- paneling free forms assignment problems with optimization
- the design dilemma numerical methods like energy-guided projection

What are free forms?

- Some structures are easy to design (at least, as an amorphous surface), but cannot be fully designed easily or built cheaply
- Special cases are easier, but are no true free forms

Triangle meshes or quad meshes?

Issues: flat panels, weight, torsion in nodes

[Cour Visconti, Louvre. image: Waagner-Biro Stahlbau]

Torsion-free support structures

• **Def.** A torsion-free support structure associated to a mesh (V, E, F) edges is an assignment of a line $\ell(v)$ to each vertex v and a plane $\pi(e)$ to each edge e, such that $v \in e \implies \ell(v) \subset \pi(e)$

Torsion-free support structures

- align straight beams with planes $\pi(e)$
- clean (\implies cheaply built) intersection

Torsion-free support structures

- Prop. A triangle mesh has only trivial support structures, where all elements pass through a single center z.
- **Proof** For each face $f = v_i v_j v_k$, we have $\ell(v_i) = \pi(v_i v_j) \cap \pi(v_i v_k)$, and similar for $\ell(v_j)$, $\ell(v_k)$.
- $z(f) = \pi(v_i v_j) \cap \pi(v_i v_k) \cap \pi(v_j v_k)$ lies on all lines $\ell(v_i), \ell(v_j), \ell(v_k)$.
- If $f' = (v_i v_j v_l)$ is a neighbor face, then $z(f) = \ell(v_i) \cap \ell(v_j) = z(f')$.
- Quad meshes are "better" than triangle meshes, as far as complexity of nodes is concerned are concerned

Quad meshes with planar faces

- start of architecture applications of DDG [Liu et al, SIGGRAPH 2006]
- Cannot simply "optimize" a quad mesh for conjugacy (planar faces).
 Geometric shape determines net to great extent
- Only recently, interactive modelling has become efficient enough for the planarity constraint [Tang et al, SIGGRAPH 2014]

Parallel meshes

- Meshes with planar faces are parallel, if corresponding edges and faces are
- Parallel meshes define a torsion-free support structure, and vice versa.

Constant-distance offsets

- If M, M^* are parallel with $M^* \approx S^2$, vertex-wise linear combination
 - $M^t = M + tM^*$ yields an offset of M at constant distance t
- *M** inscribed in *S*² vertex offset
- M* circumscribed
 - face offset
- *M** midscribed (Koebe)
 - edge offset
- existence: 3-system

Constant-distance offsets

- application:
 multilayer
 constructions
- here: beams of constant height

The design dilemma

- If Mathematics is involved in the design phase, definite solutions of problems are unwelcome.
- Unique solutions restrict freedom of artistic expression
- Example: Eiffel Tower pavilions

The design dilemma

Eiffel tower pavilions

- curved beams are developable& orthogonal to glass surfaces
 - ⇒ they follow principal
 curvature lines; their layout is
 defined already by the glass
 surface
- Solution: impreceptibly change glass until principal curves fit

Freeform architecture: Summary

- DDG occurs in the realization of free forms
- Design dilemma
- Goal for the future: geometry-aware computational design.

Conclusion

- Multidimensional consistency as a discretization principle
- Examples of 2-systems and 3-systems
- Applications within Mathematics
- Applications outside Mathematics

