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Overview

® |ntroduction and Notation

= An integrable 3-system: circular surfaces
®  An integrable 2-system: K-surfaces

= Computing minimal surfaces

® Freeform architecture



Part |

Introduction and Notation



Parametric Surfaces

= Surfaces x(u) where u € ZXoru e R*oru € Z* x R’
® continuous case, discrete case, mixed case
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Parametric Surfaces

= Surfaces x(u) where ue Z*oru e R*oru e Z* x R/

® continuous case, discrete case, mixed case

® Transformations of
(k — 1)-dimensional
surfaces yield

k-dim. surfaces




Examples of discrete surfaces

® quad meshes in freeform architecture
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Examples of discrete surfaces

® various mappings
7* — {points} or
7* — {spheres} or ...

® Discrete minimal surfaces,
discrete cmc surfaces,
discrete K-surfaces,

efc.

[images: Tim Hoffmann]



Notation

m discrete parametric surface = net
®  Right shift of a surface x in the k-th direction is denoted by xj
Left shift of a surface x in the k-th direction is denoted x;

( X{p——Xp —— X12
xi(k,)=x(k+1,1) |
{ X7 X X1

\Xg(k, N =x(k,|+1) |
X[3 X3 X1

m Differences are used instead of derivatives A;x = x; — x



Surface classes: conjugate surfaces

B a smooth conjugate surface x(u) has “planar” infinitesimal quads

3vol (c.h. (x(u), x(ui+e, w2), x(u1, thte), x(u1+e, ur+e)))/e*
= det(x(u1+e€, n) — x(u), x(u1, ih+€) — x(u), x(u1+€, h+€) — x(u))
~ det(€d1x, €0hx, €01X + £0ox + 2€°010x) /2€*
= det(01x, 0, O1ox) =0
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Surface classes: conjugate surfaces

® 3 discrete conjugate surface x(u) has planar elementary quads

u det(Akx, Ax, Ak/X) =0 <<

X — Xkl
I is co-planar for all /, k <= (generically)
X— Xk

m there are coefficient functions c’*, c*' s.t. A,Ax = c/*Ax + cX'Ax.
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Surface classes: asymptotic surfaces

®m Parameter lines are asymptotic, i.e., in every point they indicate
the intersection of the saddle-shaped surface with its own tangent
plane

B smooth case: 011x, Oxnx € span{0d;x, 0>}

® discrete case:

X2

X, X1, X{, X0, X € plane P(u) X3—Xx—X1

X5




Surface classes: principal surfaces

® smooth case: parameter lines are conjugate + orthogonal
X|— Xkl

= discrete case: | ~is circular for all /, k
X—X
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Why is circularity “principal”?

® smooth case: principal curves

are characterized by ]\ l...
developabililty of the surface L
formed by normals \ \

= discrete case: normals are \

circles’ axes. Observe

developability

N

/

B (convergence can be proved)
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Part Il

3-systems



Conjugacy as a 3-system

® Generically, a conjugate net x(u1, u, u3) is uniquely determined by
arbitrary initial values x(0, u, u3) and x(uq, 0, u3) and x(uq, uy, 0).

®m Proof is trivial (intersect planes)

X123




Circularity as a 3-system

®m Generically, a circular net x(uq, up, u3) is uniquely determined by

arbitrary initial values x(0, u,, u3) and x(uq, 0, u3) and x(uq, up, 0).

® Proof is not trivial (Miquel’'s theorem)




Reduction of 3-systems

B conjugate nets live in projective geometry

® circular nets live in MGbius geometry

® Qval quadric (sphere) in projective space is a model Mobius ge-
ometry — planar sections are circle, projective automorphisms of
quadric are Mobius transforms

B conjugate net in the quadric is a circular net




Propagation of Circularity

® Consider a conjugate net x(uq, . . ., u,) (n > 3). In the generic case
circularity is implied by circular initial values (i.e., quads containing

vertices with uyus - - - u, = 0 are circular).

m Proof: Consider a 3-cell with diagonal x—xjo3
where the quads incident to x are circular.

m Miquel = Xxq,3 exists is intersection of
circles. Conjugacy = xqo3 is already

determined as intersection of planes.




4-consistency of 3-systems

® Can we construct a conjugate net x(uy, u, us, us) from conjugate

initial values? (quads having a vertex with v, us3u4 = 0 are planar)

. : X1234/-...
® Make 3-cubes incident with x N
: _ X134 ... X34 ... X124
conjugate: These are x—xi23, AN ot e
X34 | T X14 ' X4
X—X1o4, X—X134, ANA X—Xoz4. | [ el AN //
, X123 ... T X
® Now there are four competing N
: X13--.. X03-.... | 'X12
ways to find xi234: one for each 13\ /23 ......... N
C . X3 7. x1” | T X2
3-cube incident with X1234- e AN /




4-consistency of 3-systems

® Thm. Conjugacy is an integrable (i.e., 4-consistent) 3-system.

® Proof in dimensions > 4: Within cube x;—xi234, We have

X1234 € Span(xi2X123X124) M Span(Xi3x132X134) N Span(X14X142X143).

m Similar expressions for other cubes

B each quad is intersection of two cubes
= x1234 € 2 (span(... .))

® that expression no longer depends

on choice of initial 3-cube, g.e.d.




4-consistency of 3-systems

= Lemma. Consider coefficient functions c’%, c¥’ in a conjugate 3- net

defined by AAx = c’*Arx + c¥'A;x. There is a birational mapping

¢
(C12, C21, C23, C32, C31, C13) } (C312, C§11 C123, Cf>2, C231, C213)

X23 X23 X123
/ /
X3 X13 X3 X13
C13’ 31 ‘ﬂ
/X12 X12

X X1 X - X1



4-consistency of 3-systems

Proof. Use the “product rule” Aj(a- b) = a;- A;b+ Aj;a- b to expand
NADx = N(Ax 4 IFDx) = VNN x + D cH D jx A+ - -

= (c9c" + *NAx 4+ (Ve + A M)A x + (H K4 AR Agx.
AN DX = (¢fc + ¢ ) Ajx + (X + D) Arx + (¢ + Ajc)Aix.
ADAx = (' ™ + ¢ )V Ax 4 () '+ A Aix 4 (¢ ¥+ Dc?)Ax.
Permutation invariance of A;A;A, yields linear system for var. (32, . . ., ci?),
namely equations A;c/* = ¢/c/* +cJ/c’k — I 'k (i # j # k # i) validin

the generic case. Matrix inversion —> desired birational mapping.



4-consistency of 3-systems

® Thm. Conjugacy is an integrable (i.e., 4-consistent) 3-system.
® Proof. general position and dimension d > 4. see above.

m Alternative: computation x;»34 by the birational mapping

(Cl'k, Ck/" Ck/, C/k, C//, C//) I (]5; (C/k, C/k/, C/'k/’ C/'/k' C//(/" C/i/)
which applies to AxA;x = c’*Arx + K Ax. X3t
_ _ _ X134 ..., X034 o X124
= Different computations yield the same Mo T x0T s
................ N
result in case d > 4 = identity of X123 | x4
. : : X134, X023l
rational functions — same result in \X3/ .............

allcases. T



N-consistency of 3-systems

® Thm. Circularity is an integrable (i.e., 4-consistent) 3-system.
®m Proof. Circularity propagates through a conjugate net.

® Thm. 4-consistency implies N-consistency for N > 4.

®m Proof. (N = 5) Suppose 4-cubes x—xi234, X—X1235, ... X—X345.
are conjugate = each 4-cube Xl
o _ _ . _ X134 ... X234 e X124
incident with xy,345 IS conjugate, with S ST 12”00
................ \
a possible conflict regarding x234s. X123 4 [ o)
: : X134 X3 | | X12
®m There is no conflict because any N P T 0
................ NI

two 4-cubes share a 3-cube. T



3-systems: Summary

® Discrete conjugate surfaces resp. circular surfaces are discrete
versions of smooth conjugate surfaces resp. principal surfaces.

®  Conjugacy is a 3-system in d-dimensional projective space (d > 3),
and circularity is a 3-system in d-dimensional MoObius geometry
(d > 2).

m Both 3-systems are 4-consistent, i.e., integrable.

® 4-consistency implies N-consistency for all N > 4.
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2-Systems



K-surfaces

®m For a smooth surface x(uq, u») which is asymptotic, i.e.,
811X, 822X € span{@lx, @2},

K = const is characterized by the

Chebyshev condition
8>[|01x|| = B1]|G2x|| = O
® discrete n-dim. case:
X, Xk, Xg, X1, X7 € plane P(u)

Afl|Arx|| = Axl[Ax|] =0




K-surfaces

® unit normal vector n(u),
rotation angle cos o = (n, ny)

= A Arx|] =0 (I # k)
Ai(n, nk) =0 (I # k)

® x(uq, up) is uniquely determined
by initial values x(0, u») and
x(uq,0) (2-system property)

5 >
. D Lo
)
EoP e T

- ®

Se[Winderiich 1951]

B — flexible mechanism made

of flat twisted members



Multidim. consistency of K-nets

= Thm. A discrete K-net x(uy, ..., ug) has unit normal vectors n
which obey A/(n, ny) = 0 (k # I) (Chebyshev property), besides
other conditions (T-net property).

The K-net property is d-consistent for d > 3 (i.e., integrable): any

choice of initial values
n(i,0,..., 0), n(0,n,..., 0), ..., n(0,0,..., Iq) (d >2)

can be extended to a net of unit normal vectors, and in turn defines

a K-surface.



Multidim. consistency of K-nets

®= A 3-dimensional K-surface
consists of sequential Backlund
transforms of 2D K-surfaces

= A 4-dimensional K-surface is a
lattice of Backlund transforms

® (Curiosity: Bennet’s 1906 4-bar

and 12-bar mechanisms)




Backlund transform

m Existence of Backlund transforms for discrete K-surfaces is

3-consistency

= Bianchi permutability is 4-consistency

® This is true also for smooth
K-surfaces xD (i, un)

® Discrete theory is master
theory, smooth situation

obtainable by a limit



The sine-Gordon equation

® If x(u1, p) is smooth surface with
10ux]] = |1&2x]| = 1,
the angle between the parameter lines obeys
Ora¢(u, o) = —K(uy, u2) - sin(uy, o)

®m |f K = —1, the angle obeys the sine-Gordon
equation:
612q5 = sin Qb




The sine-Gordon equation

B angle ¢ between parameter lines of surface x(uy, u,) obeys
612(15 = sin (15

m If x(U js a Backlund transform of x, the
angle ¢V likewise obeys the sine-Gordon XD (un, Ty

equation, and in addition we have

(1)
A1) = 819 + 2asin ¢ +2¢

» — ¢

&) = —8,0 + —Sln 5




The sine-Gordon equation

® The evolution of the angle between edges in a discrete K-surface,
the sine-Gordon equation and the Backlund transformation of the
sine-Gordon equation are all consequences of the discrete Hirota
equation which applies to d-dimensional discrete K-surfaces.

® |mportant step in the history of discrete differential geometry
[Bobenko Pinkall J. Diff. Geom 1996]



Discretization Principles

® smooth objects have several equivalent defining properties, unclear

which one should be discretized

= E.g., minimal surfaces are equivalently defined . ..

in a variational way (local area minimization)

via curvatures (H = 0)

explicity, as x(u, v) = s Re f0”+/v (f(2)(1—9(2)?), if(z2)(1+9(2)?),
2f(z)g(z)) dz (Christoffel-dual transformation of a conformal

parametrization of S2)



Discretization Principles

®  Good discretizations retain not only one, but several properties of
the smooth object

® curious fact: the most interesting discrete versions of surfaces
orignally defined by curvatures do not involve curvatures at all.

® |ntegrability (= consistency) is a major discretization principle



2-systems: Summary

m K-surfaces as a mechanism, as a 2-system, as a geometric incar-
nation of the sine-Gordon equation

® Transformations of surfaces

= higher-dimensional surfaces R
m parallel devlopment: integrable discretization

of surfaces, and of equations. '
m Discretization principles

® Discrete theory is master theory



Part IV

Applications

Computing Minimal Surfaces



Isothermic surfaces and their duals

® Dfn. An isothermic surface x(uq, up) is a conformal principal sur-
face, i.e., ||01x]|| = ||0x]|, (O1x, Oox) = 0, O1ox € span(01x, Orx).
= Lemma. An isothermic surface has a Christoffel-dual surface x*

(again isothermic, with ||0xx*|| = 1/||0kx]|) defined by

—

3J-X*:(—1)j_1 an // \

[|Okx||? /
= Proof. Check
aQ(alX*) — a1(62X *) \ 0 St |




Minimal surfaces as Christoffel duals

= Thm. If x(uy, up) is a conformal parametrization of S?, it is isother-
mic and its dual is a minimal surface whose normal vector field is
x*. Every minimal surface is obtained in this way.

® Some implications are easy, e.g.

81X , S
K1 = = ||Okx / \
1 61 X * ‘ | k ‘ | ’ y \\
Ko = = —||Okx |
2 = 5 = —l18ix]

K1+ Ko \
— H = = 0.
2 \\




Koebe polyhedra

= Thm. For each convex polyhedron P there is a combinatorially
equivalent convex polyhedron P’ whose edges are tangent to the
unit sphere (Koebe polyhedron).

® P'is unique up to
Mobius transforms,
exactly one P’ has
its center of mass
in 0.




Discrete s-isothermic surfaces

®= Dfn. S-isothermic surfaces are polyhedra where faces f € F have
incircles c(f), vertices v € V are centers of spheres S(v), and

edges e € E carry points T (e) s.t.

= yvce = S(v)intersects e orthogonally 5" (\
in the point 7 (e)

B eCf = c(f)touches ein T (e)

B Vv eV, deg(v) =4. Vf € F, deg(f) even

m Koebe polyhedra are s-isothermic, if . ..




Discrete s-isothermic surfaces

B s-isothermic surface is
circle-sphere arrangement

= combinatorially regular
parts of s-isothermic
surfaces (resp. Koebe
polyhedra) are regarded
as conformal

parametrizations
[image: Tim Hoffmann]



Dualizing polygons

® Lemma. A 2n-gon with incircle has a dual as follows:

k

x qi
q; = @/,0_;

radius 1/p

= Lemma. Subdivision into quads yields discrete surfaces with

1 1

AX = ——Axq, Axi=-——""
T AR TR T A

AXQ .



Christoffel duality of surfaces

® Prop. An s-isothermic surface has a Christoffel dual surface, s.t.

corresponding faces are dual in the above sense.
B Proof. Labels @, © can be consistently assigned. By elementary

geometry, dual lenghts and angles fit locally.

[images: B. Springborn]



Discrete minimal surfaces

= Dfn. Minimal surface is dual of Koebe s-isothermic surface

® Thm. Convergence to principal curves of minimal surface

® Proof. via convergence of circle packings to conformal mappings
[O. Schramm. Circle patterns with the combinatorics of the square grid,

Duke Math. J. 1997]

[images: B. Springborn]




Computing minimal surf.

B minimal surface = principal curves = map to
unit sphere =- cell decomposition of sphere =-
Koebe polyhedron =- discrete minimal surface
[Bobenko Hoffmann Springborn, Ann. Math. 2006]
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[images: B. Springborn]



Constant-distance offset surfaces

m  Constant-speed evolution x* = x + t - n(x) of a smooth surface
® Constant-speed evolution vt = v + t - v* of a polyhedral sur-
face M, guided by a combinatorially equivalent surface M* whose

edges/faces are parallel to those of M.

® |inear space of
polyhedral surfaces
parallel to M

CE YA 52




Curvatures of discrete surfaces

= Evolution of smooth surface: dA*(x) = (1 —2H(x)t+ K (x)t?) dA(x).
= Evolution of discrete surface: A(ft) = A(f) + 2tA(f, F*) + t?A(f*)

AC.F) | A0

A(FE) = A(f)(1 o

A(f) A(f)

n—1
1
= A(f) =5 > det(v;, vit1, nf)
1=0 ‘

T
k()= AT

A(f) 52



Curvatures of discrete surfaces

® By means of areas and mixed areas, a mean curvature and Gauss
curvature can be assigned to the individual faces of a polyhedral
surface M*, if M is endowed with an appropriate Gauss image M*.

® Lemma S-isothermic minimal surfaces enjoy H = 0.

m classes of discrete surfaces whose continuous originals are defined
by curvatures, now can be equipped with curvatures too.

[Bobenko Pottmann W Math. Ann 2010]
[Hoffmann, Sageman-Furnas, Wardetzky IMRN 2015]



Summary

® The duals of Koebe polyhedra are discrete minimal surfaces

B This can be used to compute the shape of minimal surfaces form
the combinatorics of their network of principal curvature lines

®m Despite being constructed by means of other discretization princi-

ples, classes of discrete surfaces can be endowed with curvatures



Part V

Applications: Freeform Architecture



List of topics

m steel-glass constructions following polyhedral surfaces / single-
curved glass — conjugate surfaces

® torsion-free support structures / self-supporting surfaces / material-
minimizing forms — curvatures of discrete surfaces

® regular patterns — circle packings, discrete conformal mapping

® paneling free forms — assignment problems with optimization

= the design dilemma — numerical methdods like energy-guided pro-

jection



What are free forms?

B Some structures are easy to design (at least, as an amorphous

surface), but cannot be fully designed easily or built cheaply

= Special cases are easier, but B TS S

are no true free forms [ " SN
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Torsion-free support structures

m Def. Atorsion-free support structure associatedtoamesh (V, E, F)

edges is an assignment of a line £(v) to each vertex v and a plane

m(e) to each edge e, suchthat v € e = 4(v) C 7(e)




Torsion-free support structures

®  align straight beams with planes 7(e)

® clean ( = cheaply built) intersection

Foto: Waagrme gdhibau
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Torsion-free support structures

= Prop. Atriangle mesh has only trivial support structures, where all
elements pass through a single center z.

m Proof For each face f = vjvjv, we have £(v;) = w(v;vj) N m(vjvg),
and similar for £(v;), £(v).

B z(f)=m7(v,v;) n(vivk) N T(vjvy) lies on all lines £(v;), £(v;), £(vk).

m |f ' = (v;vjv)) is a neighbor face, then z(f) = £(v;) N £4(v;) = z(f').

B Quad meshes are “better” than triangle meshes, as far as complex-

ity of nodes is concerned are concerned



Quad meshes with planar faces

® start of architecture applications of DDG [Liu et al, SIGGRAPH 2006]

®  Cannot simply “optimize” a quad mesh for conjugacy (planar faces).
Geometric shape determines net to great extent

= Only recently, interactive modelling has become efficient enough

for the planarity constraint [Tang et al, SIGGRAPH 2014]
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Parallel meshes

®  Meshes with planar faces are

parallel, if corresponding edges

and faces are
® Parallel meshes define a
torsion-free support structure,

and vice versa.




Constant-distance offsets

= |f M, M* are parallel with M* ~ S?, vertex-wise linear combination

Mt = M + tM* yields an offset of M at constant distance t

® M* circumscribed

— face offset
= M* midscribed (Koebe) || |
— edge offset |

® existence: 3-system




Constant-distance offsets

®m  gpplication:
multilayer
constructions

® here: beams of

constant height




= |f Mathematics is involved in the
design phase, definite solutions
of problems are unwelcome.

= Unique solutions restrict
freedom of artistic expression

= Example: Eiffel Tower pavilions




m  Eiffel tower pavilions

® curved beams are developable
& orthogonal to glass surfaces

= — they follow principal
curvature lines; their layout is
defined already by the glass
surface

® Solution: impreceptibly change

glass until principal curves fit



Freeform architecture: Summary

® DDG occurs in the realization of free forms

® Design dilemma
®m (Goal for the future: geometry-aware computational design.



Conclusion

Multidimensional consistency as a discretization principle

Examples of 2-systems and 3-systems

Applications within Mathematics

Applications outside Mathematics

PGD

Discretization in
Geometry and Dynamics
SFB Transregio 109

LLI I Der Wissenschaftsfonds.



