Discrete Parametric Surfaces

Johannes Wallner
Short Course on Discrete Differential Geometry
San Diego, Joint Mathematical Meetings 2018

Overview

- Introduction and Notation
- An integrable 3-system: circular surfaces
- An integrable 2-system: K-surfaces
- Computing minimal surfaces
- Freeform architecture

Part I

Introduction and Notation

Parametric Surfaces

- Surfaces $x(u)$ where $u \in \mathbb{Z}^{k}$ or $u \in \mathbb{R}^{k}$ or $u \in \mathbb{Z}^{k} \times \mathbb{R}^{\prime}$
- continuous case, discrete case, mixed case

Parametric Surfaces

- Surfaces $x(u)$ where $u \in \mathbb{Z}^{k}$ or $u \in \mathbb{R}^{k}$ or $u \in \mathbb{Z}^{k} \times \mathbb{R}^{\prime}$
- continuous case, discrete case, mixed case
- Transformations of
($k-1$)-dimensional
surfaces yield k-dim. surfaces

Examples of discrete surfaces

- quad meshes in freeform architecture

Examples of discrete surfaces

- various mappings
$\mathbb{Z}^{k} \rightarrow$ \{points $\}$ or
$\mathbb{Z}^{k} \rightarrow\{$ spheres $\}$ or ...
- Discrete minimal surfaces, discrete cmc surfaces, discrete K-surfaces, etc.

[images: Tim Hoffmann]
- discrete parametric surface \cong net
- Right shift of a surface x in the k-th direction is denoted by x_{k} Left shift of a surface x in the k-th direction is denoted $x_{\bar{k}}$

$$
\left\{\begin{array}{l}
x_{1}(k, l)=x(k+1, l) \\
x_{2}(k, l)=x(k, l+1)
\end{array}\right.
$$

- Differences are used instead of derivatives $\Delta_{i} x=x_{i}-x$

Surface classes: conjugate surfaces

- a smooth conjugate surface $x(u)$ has "planar" infinitesimal quads

$$
\begin{aligned}
& 3 \operatorname{vol}\left(\operatorname{ch} .\left(x(u), x\left(u_{1}+\varepsilon, u_{2}\right), x\left(u_{1}, u_{2}+\varepsilon\right), x\left(u_{1}+\varepsilon, u_{2}+\varepsilon\right)\right)\right) / \varepsilon^{4} \\
= & \operatorname{det}\left(x\left(u_{1}+\varepsilon, u_{2}\right)-x(u), x\left(u_{1}, u_{2}+\varepsilon\right)-x(u), x\left(u_{1}+\varepsilon, u_{2}+\varepsilon\right)-x(u)\right) \frac{1}{2 \varepsilon^{4}} \\
\approx & \operatorname{det}\left(\varepsilon \partial_{1} x, \varepsilon \partial_{2} x, \varepsilon \partial_{1} x+\varepsilon \partial_{2} x+2 \varepsilon^{2} \partial_{12} x\right) / 2 \varepsilon^{4} \\
= & \operatorname{det}\left(\partial_{1} x, \partial_{2}, \partial_{12} x\right)=0
\end{aligned}
$$

Surface classes: conjugate surfaces

- a discrete conjugate surface $x(u)$ has planar elementary quads
- $\operatorname{det}\left(\Delta_{k} x, \Delta_{I} x, \Delta_{k \mid} x\right)=0$
- $\begin{aligned} & x_{I}-x_{k I} \\ & x-x_{k}\end{aligned}$ is co-planar for all $I, k \Longleftrightarrow$ (generically)
- there are coefficient functions $c^{\prime k}, c^{k l}$ s.t. $\Delta_{k} \Delta_{l} x=c^{\prime k} \Delta_{k} x+c^{k l} \Delta_{l} x$.

Surface classes: asymptotic surfaces

- Parameter lines are asymptotic, i.e., in every point they indicate the intersection of the saddle-shaped surface with its own tangent plane
- smooth case: $\partial_{11} x, \partial_{22} x \in \operatorname{span}\left\{\partial_{1} x, \partial_{2}\right\}$.
- discrete case:

$$
x, x_{1}, x_{\overline{1}}, x_{2}, x_{\overline{2}} \in \text { plane } P(u)
$$

Surface classes: principal surfaces

- smooth case: parameter lines are conjugate + orthogonal
- discrete case: $\left.\right|_{x-x_{k}} ^{x_{I}-x_{k I}}$ is circular for all I, k

Why is circularity "principal"?

- smooth case: principal curves are characterized by developabililty of the surface formed by normals
- discrete case: normals are circles' axes. Observe developability
- (convergence can be proved)

Monographs

- [R. Sauer:

Differenzengeometrie,
Springer 1970]

- [A. Bobenko, Yu. Suris:

Discrete Differential
Geometry, AMS 2009]

Robert Suag

Differenzengeometrie

Discrete Differential Geometry
 Integrable Structure

Alexander I. Bobenko
Yuri B. Suris

Graduate Studies
in Mathematics
Volume 98

Part II

3-systems

Conjugacy as a 3-system

- Generically, a conjugate net $x\left(u_{1}, u_{2}, u_{3}\right)$ is uniquely determined by arbitrary initial values $x\left(0, u_{2}, u_{3}\right)$ and $x\left(u_{1}, 0, u_{3}\right)$ and $x\left(u_{1}, u_{2}, 0\right)$.
- Proof is trivial (intersect planes)

Circularity as a 3-system

- Generically, a circular net $x\left(u_{1}, u_{2}, u_{3}\right)$ is uniquely determined by arbitrary initial values $x\left(0, u_{2}, u_{3}\right)$ and $x\left(u_{1}, 0, u_{3}\right)$ and $x\left(u_{1}, u_{2}, 0\right)$.
- Proof is not trivial (Miquel's theorem)

Reduction of 3-systems

- conjugate nets live in projective geometry
- circular nets live in Möbius geometry
- Oval quadric (sphere) in projective space is a model Möbius geometry — planar sections are circle, projective automorphisms of quadric are Möbius transforms
- conjugate net in the quadric is a circular net

Propagation of Circularity

- Consider a conjugate net $x\left(u_{1}, \ldots, u_{n}\right)(n \geq 3)$. In the generic case circularity is implied by circular initial values (i.e., quads containing vertices with $u_{1} u_{2} \cdots u_{n}=0$ are circular).
- Proof: Consider a 3-cell with diagonal x — x_{123} where the quads incident to x are circular.
- Miquel $\Longrightarrow x_{123}$ exists is intersection of circles. Conjugacy $\Longrightarrow x_{123}$ is already determined as intersection of planes.

4-consistency of 3-systems

- Can we construct a conjugate net $x\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ from conjugate initial values? (quads having a vertex with $u_{1} u_{2} u_{3} u_{4}=0$ are planar)
- Make 3 -cubes incident with x conjugate: These are $x-x_{123}$, x - $x_{124}, x-x_{134}$, and x - x_{234}.
- Now there are four competing ways to find x_{1234} : one for each 3 -cube incident with x_{1234}.

4-consistency of 3-systems

- Thm. Conjugacy is an integrable (i.e., 4-consistent) 3-system.
- Proof in dimensions ≥ 4 : Within cube $x_{1}-x_{1234}$, we have

$$
x_{1234} \in \operatorname{span}\left(x_{12} x_{123} x_{124}\right) \cap \operatorname{span}\left(x_{13} x_{132} x_{134}\right) \cap \operatorname{span}\left(x_{14} x_{142} x_{143}\right) .
$$

- Similar expressions for other cubes
- each quad is intersection of two cubes $\Longrightarrow x_{1234} \in \bigcap_{i=1}^{64}(\operatorname{span}(\ldots))$
- that expression no longer depends on choice of initial 3-cube, q.e.d.

4-consistency of 3-systems

- Lemma. Consider coefficient functions $c^{l k}, c^{k l}$ in a conjugate 3-net defined by $\Delta_{k} \Delta_{I} x=c^{l k} \Delta_{k} x+c^{k l} \Delta_{I} x$. There is a birational mapping

$$
\left(c^{12}, c^{21}, c^{23}, c^{32}, c^{31}, c^{13}\right) \stackrel{\phi}{\mapsto}\left(c_{3}^{12}, c_{3}^{21}, c_{1}^{23}, c_{1}^{32}, c_{2}^{31}, c_{2}^{13}\right)
$$

4-consistency of 3-systems

Proof. Use the "product rule" $\Delta_{j}(a \cdot b)=a_{j} \cdot \Delta_{j} b+\Delta_{j} a \cdot b$ to expand
$\Delta_{i} \Delta_{j} \Delta_{k} x=\Delta_{i}\left(c^{k j} \Delta_{j} x+c^{j k} \Delta_{k} x\right)=c_{i}^{k j} \Delta_{i} \Delta_{j} x+\Delta_{i} c^{k j} \Delta_{j} x+\cdots$

$$
=\left(c_{i}^{k j} c^{j i}+c_{i}^{j k} c^{k i}\right) \Delta_{i} x+\left(c_{i}^{k j} c^{i j}+\Delta_{i} c^{k j}\right) \Delta_{j} x+\left(c_{i}^{j k} c^{i k}+\Delta_{i} c^{j k}\right) \Delta_{k} x .
$$

$\Delta_{j} \Delta_{k} \Delta_{i} x=\left(c_{j}^{i k} c^{k j}+c_{j}^{k i} c^{i j}\right) \Delta_{j} x+\left(c_{j}^{i k} c^{j k}+\Delta_{j} c^{i k}\right) \Delta_{k} x+\left(c_{j}^{k i} c^{j i}+\Delta_{j} c^{k i}\right) \Delta_{i} x$.
$\Delta_{k} \Delta_{i} \Delta_{j} x=\left(c_{k}^{j i} c^{i k}+c_{k}^{i j} c^{j k}\right) \Delta_{k} x+\left(c_{k}^{j i} c^{k i}+\Delta_{k} c^{j i}\right) \Delta_{i} x+\left(c_{k}^{i j} c^{k j}+\Delta_{k} c^{i j}\right) \Delta_{j} x$.
Permutation invariance of $\Delta_{i} \Delta_{j} \Delta_{k}$ yields linear system for var. $\left(c_{3}^{12}, \ldots, c_{1}^{32}\right)$, namely equations $\Delta_{i} c^{j k}=c_{k}^{i j} c^{j k}+c_{k}^{j i} c^{i k}-c_{i}^{j k} c^{i k}(i \neq j \neq k \neq i)$ valid in the generic case. Matrix inversion \Longrightarrow desired birational mapping.

4-consistency of 3-systems

- Thm. Conjugacy is an integrable (i.e., 4-consistent) 3-system.
- Proof. general position and dimension $d \geq 4$: see above.
- Alternative: computation x_{1234} by the birational mapping
$\left(c^{i k}, c^{k i}, c^{k l}, c^{\prime k}, c^{\prime i}, c^{i \prime}\right) \stackrel{\Phi}{\longmapsto}\left(c_{l}^{i k}, c_{l}^{k i}, c_{i}^{k l}, c_{i}^{\prime k}, c_{k}^{l i}, c_{k}^{i \prime}\right)$
which applies to $\Delta_{k} \Delta_{l} x=c^{\prime k} \Delta_{k} x+c^{k l} \Delta_{\mid} x$.
- Different computations yield the same result in case $d \geq 4 \Longrightarrow$ identity of rational functions \Longrightarrow same result in all cases.

N-consistency of 3-systems

- Thm. Circularity is an integrable (i.e., 4-consistent) 3-system.
- Proof. Circularity propagates through a conjugate net.
- Thm. 4-consistency implies N-consistency for $N \geq 4$.
- Proof. $(N=5)$ Suppose 4 -cubes $x-x_{1234}, x-x_{1235}$,
$x-x_{2345}$. are conjugate \Longrightarrow each 4-cube incident with x_{12345} is conjugate, with a possible conflict regarding x_{12345}.
- There is no conflict because any two 4-cubes share a 3-cube.

3-systems: Summary

- Discrete conjugate surfaces resp. circular surfaces are discrete versions of smooth conjugate surfaces resp. principal surfaces.
- Conjugacy is a 3-system in d-dimensional projective space ($d \geq 3$), and circularity is a 3 -system in d-dimensional Möbius geometry ($d \geq 2$).
- Both 3-systems are 4-consistent, i.e., integrable.
- 4-consistency implies N-consistency for all $N \geq 4$.

Part III

2-Systems

K-surfaces

- For a smooth surface $x\left(u_{1}, u_{2}\right)$ which is asymptotic, i.e.,

$$
\partial_{11} x, \partial_{22} x \in \operatorname{span}\left\{\partial_{1} x, \partial_{2}\right\}
$$

$K=$ const is characterized by the
Chebyshev condition

$$
\partial_{2}\left\|\partial_{1} x\right\|=\partial_{1}\left\|\partial_{2} x\right\|=0
$$

- discrete n-dim. case:

$$
\begin{aligned}
& x, x_{k}, x_{\bar{k}}, x_{l}, x_{T} \in \text { plane } P(u) \\
& \Delta_{l}\left\|\Delta_{k} x\right\|=\Delta_{k}\left\|\Delta_{l} x\right\|=0
\end{aligned}
$$

K-surfaces

- unit normal vector $n(u)$, rotation angle $\cos \alpha_{k}=\left\langle n, n_{k}\right\rangle$
- $\Delta_{l}\left\|\Delta_{k} x\right\|=0(l \neq k)$
$\Delta_{l}\left\langle n, n_{k}\right\rangle=0(I \neq k)$
- $x\left(u_{1}, u_{2}\right)$ is uniquely determined by initial values $x\left(0, u_{2}\right)$ and $x\left(u_{1}, 0\right)$ (2-system property)
- \Longrightarrow flexible mechanism made of flat twisted members

Multidim. consistency of K-nets

- Thm. A discrete K-net $x\left(u_{1}, \ldots, u_{d}\right)$ has unit normal vectors n which obey $\Delta_{l}\left\langle n, n_{k}\right\rangle=0(k \neq l)$ (Chebyshev property), besides other conditions (T-net property).

The K-net property is d-consistent for $d \geq 3$ (i.e., integrable): any choice of initial values

$$
n\left(i_{1}, 0, \ldots, 0\right), \quad n\left(0, i_{1}, \ldots, 0\right), \quad \ldots, \quad n\left(0,0, \ldots, i_{d}\right) \quad(d \geq 2)
$$

can be extended to a net of unit normal vectors, and in turn defines a K-surface.

Multidim. consistency of K-nets

- A 3-dimensional K-surface consists of sequential Bäcklund transforms of 2D K-surfaces
- A 4-dimensional K-surface is a lattice of Bäcklund transforms
- (Curiosity: Bennet’s 1906 4-bar and 12-bar mechanisms)

Bäcklund transform

- Existence of Bäcklund transforms for discrete K-surfaces is 3-consistency
- Bianchi permutability is 4-consistency
- This is true also for smooth K-surfaces
- Discrete theory is master theory, smooth situation obtainable by a limit

The sine-Gordon equation

- If $x\left(u_{1}, u_{2}\right)$ is smooth surface with

$$
\left\|\partial_{1} x\right\|=\left\|\partial_{2} x\right\|=1
$$

the angle between the parameter lines obeys

$$
\partial_{12} \phi\left(u_{1}, u_{2}\right)=-K\left(u_{1}, u_{2}\right) \cdot \sin \phi\left(u_{1}, u_{2}\right)
$$

- If $K=-1$, the angle obeys the sine-Gordon equation:

$$
\partial_{12} \phi=\sin \phi .
$$

The sine-Gordon equation

- angle ϕ between parameter lines of surface $x\left(u_{1}, u_{2}\right)$ obeys

$$
\partial_{12} \phi=\sin \phi .
$$

- If $x^{(1)}$ is a Bäcklund transform of x, the angle $\phi^{(1)}$ likewise obeys the sine-Gordon equation, and in addition we have

$$
\begin{aligned}
& \partial_{1} \phi^{(1)}=\partial_{1} \phi+2 a \sin \frac{\phi+\phi^{(1)}}{2}, \\
& \partial_{2} \phi^{(1)}=-\partial_{2} \phi+\frac{2}{a} \sin \frac{\phi^{(1)}-\phi}{2} .
\end{aligned}
$$

The sine-Gordon equation

- The evolution of the angle between edges in a discrete K-surface, the sine-Gordon equation and the Bäcklund transformation of the sine-Gordon equation are all consequences of the discrete Hirota equation which applies to d-dimensional discrete K-surfaces.
- Important step in the history of discrete differential geometry [Bobenko Pinkall J. Diff. Geom 1996]

Discretization Principles

- smooth objects have several equivalent defining properties, unclear which one should be discretized
- E.g., minimal surfaces are equivalently defined ...
- in a variational way (local area minimization)
- via curvatures $(H=0)$
- explicity, as $x(u, v)=\frac{1}{2} \operatorname{Re} \int_{0}^{u+i v}\left(f(z)\left(1-g(z)^{2}\right), i f(z)\left(1+g(z)^{2}\right)\right.$, $2 f(z) g(z)) d z$ (Christoffel-dual transformation of a conformal parametrization of S^{2})

Discretization Principles

- Good discretizations retain not only one, but several properties of the smooth object
- curious fact: the most interesting discrete versions of surfaces orignally defined by curvatures do not involve curvatures at all.
- Integrability (= consistency) is a major discretization principle

2-systems: Summary

- K-surfaces as a mechanism, as a 2-system, as a geometric incarnation of the sine-Gordon equation
- Transformations of surfaces
= higher-dimensional surfaces
- parallel devlopment: integrable discretization of surfaces, and of equations.
- Discretization principles
- Discrete theory is master theory

Part IV

Applications

Computing Minimal Surfaces

Isothermic surfaces and their duals

- Dfn. An isothermic surface $x\left(u_{1}, u_{2}\right)$ is a conformal principal surface, i.e., $\left\|\partial_{1} x\right\|=\left\|\partial_{2} x\right\|,\left\langle\partial_{1} x, \partial_{2} x\right\rangle=0, \partial_{12} x \in \operatorname{span}\left(\partial_{1} x, \partial_{2} x\right)$.
- Lemma. An isothermic surface has a Christoffel-dual surface x^{*} (again isothermic, with $\left\|\partial_{k} x^{*}\right\|=1 /\left\|\partial_{k} x\right\|$) defined by
$\partial_{j} x^{*}=(-1)^{j-1} \frac{\partial_{j} x}{\left\|\partial_{k} x\right\|^{2}}$
- Proof. Check

$$
\partial_{2}\left(\partial_{1} x^{*}\right)=\partial_{1}\left(\partial_{2} x^{*}\right) .
$$

Minimal surfaces as Christoffel duals

- Thm. If $x\left(u_{1}, u_{2}\right)$ is a conformal parametrization of S^{2}, it is isothermic and its dual is a minimal surface whose normal vector field is x^{*}. Every minimal surface is obtained in this way.
- Some implications are easy, e.g.
$\kappa_{1}=\frac{\partial_{1} x}{\partial_{1} x^{*}}=\left\|\partial_{k} x\right\|^{2}$,
$\kappa_{2}=\frac{\partial_{2} x}{\partial_{2} x^{*}}=-\left\|\partial_{k} x\right\|^{2}$
$\Longrightarrow H=\frac{\kappa_{1}+\kappa_{2}}{2}=0$.

Koebe polyhedra

- Thm. For each convex polyhedron P there is a combinatorially equivalent convex polyhedron P^{\prime} whose edges are tangent to the unit sphere (Koebe polyhedron).
- P^{\prime} is unique up to Möbius transforms, exactly one P^{\prime} has its center of mass in 0 .

Discrete s-isothermic surfaces

- Dfn. S-isothermic surfaces are polyhedra where faces $f \in F$ have incircles $c(f)$, vertices $v \in V$ are centers of spheres $S(v)$, and edges $e \in E$ carry points $T(e)$ s.t.
- $v \in e \Longrightarrow S(v)$ intersects e orthogonally in the point $T(e)$
- $e \subset f \Longrightarrow c(f)$ touches e in $T(e)$
- $\forall v \in V, \operatorname{deg}(v)=4$. $\forall f \in F, \operatorname{deg}(f)$ even
- Koebe polyhedra are s-isothermic, if ...

Discrete s-isothermic surfaces

- s-isothermic surface is circle-sphere arrangement
- combinatorially regular parts of s-isothermic surfaces (resp. Koebe polyhedra) are regarded as conformal parametrizations

Dualizing polygons

- Lemma. A 2n-gon with incircle has a dual as follows:

- Lemma. Subdivision into quads yields discrete surfaces with

$$
\Delta x_{1}^{*}=\frac{1}{\left\|\Delta x_{1}\right\|^{2}} \Delta x_{1}, \quad \Delta x_{2}^{*}=-\frac{1}{\left\|\Delta x_{2}\right\|^{2}} \Delta x_{2} .
$$

Christoffel duality of surfaces

- Prop. An s-isothermic surface has a Christoffel dual surface, s.t. corresponding faces are dual in the above sense.
- Proof. Labels \oplus, Θ can be consistently assigned. By elementary geometry, dual lenghts and angles fit locally.
[images: B. Springborn]

Discrete minimal surfaces

- Dfn. Minimal surface is dual of Koebe s-isothermic surface
- Thm. Convergence to principal curves of minimal surface
- Proof. via convergence of circle packings to conformal mappings
[O. Schramm. Circle patterns with the combinatorics of the square grid,
Duke Math. J. 1997]
[images: B. Springborn]

Computing minimal surf.

- minimal surface \Rightarrow principal curves \Rightarrow map to unit sphere \Rightarrow cell decomposition of sphere \Rightarrow Koebe polyhedron \Rightarrow discrete minimal surface
[Bobenko Hoffmann Springborn, Ann. Math. 2006]

Constant-distance offset surfaces

- Constant-speed evolution $x^{t}=x+t \cdot n(x)$ of a smooth surface
- Constant-speed evolution $v^{t}=v+t \cdot v^{*}$ of a polyhedral surface M, guided by a combinatorially equivalent surface M^{*} whose edges/faces are parallel to those of M.
- linear space of polyhedral surfaces parallel to M
- $M^{*} \approx S^{2}$

Curvatures of discrete surfaces

- Evolution of smooth surface: $d A^{t}(x)=\left(1-2 H(x) t+K(x) t^{2}\right) d A(x)$.
- Evolution of discrete surface: $A\left(f^{t}\right)=A(f)+2 t A\left(f, f^{*}\right)+t^{2} A\left(f^{*}\right)$

$$
A\left(f^{t}\right)=A(f)\left(1-2 t \frac{A\left(f, f^{*}\right)}{A(f)}+t^{2} \frac{A\left(f^{*}\right)}{A(f)}\right)
$$

$$
\text { - } \begin{aligned}
A(f) & =\frac{1}{2} \sum_{i=0}^{n-1} \operatorname{det}\left(v_{i}, v_{i+1}, n_{f}\right) \\
H(f) & =-\frac{A\left(f, f^{*}\right)}{A(f)} \\
K(f) & =\frac{A\left(f^{*}\right)}{A(f)}
\end{aligned}
$$

Curvatures of discrete surfaces

- By means of areas and mixed areas, a mean curvature and Gauss curvature can be assigned to the individual faces of a polyhedral surface M^{*}, if M is endowed with an appropriate Gauss image M^{*}.
- Lemma S-isothermic minimal surfaces enjoy $H=0$.
- classes of discrete surfaces whose continuous originals are defined by curvatures, now can be equipped with curvatures too.
[Bobenko Pottmann W Math. Ann 2010]
[Hoffmann, Sageman-Furnas, Wardetzky IMRN 2015]

Summary

- The duals of Koebe polyhedra are discrete minimal surfaces
- This can be used to compute the shape of minimal surfaces form the combinatorics of their network of principal curvature lines
- Despite being constructed by means of other discretization principles, classes of discrete surfaces can be endowed with curvatures

Part V

Applications: Freeform Architecture

List of topics

- steel-glass constructions following polyhedral surfaces / singlecurved glass - conjugate surfaces
- torsion-free support structures / self-supporting surfaces / materialminimizing forms - curvatures of discrete surfaces
- regular patterns - circle packings, discrete conformal mapping
- paneling free forms - assignment problems with optimization
- the design dilemma - numerical methdods like energy-guided projection

What are free forms?

- Some structures are easy to design (at least, as an amorphous surface), but cannot be fully designed easily or built cheaply
- Special cases are easier, but are no true free forms

Titanglemeshes-or quad meshes?
 $48: 180$面

Torsion-free support structures

- Def. A torsion-free support structure associated to a mesh (V, E, F) edges is an assignment of a line $\ell(v)$ to each vertex v and a plane $\pi(e)$ to each edge e, such that $v \in e \Longrightarrow \ell(v) \subset \pi(e)$

Torsion-free support structures

- align straight beams with planes $\pi(e)$
- clean $(\Longrightarrow$ cheaply built) intersection

Torsion-free support structures

- Prop. A triangle mesh has only trivial support structures, where all elements pass through a single center z.
- Proof For each face $f=v_{i} v_{j} v_{k}$, we have $\ell\left(v_{i}\right)=\pi\left(v_{i} v_{j}\right) \cap \pi\left(v_{i} v_{k}\right)$, and similar for $\ell\left(v_{j}\right), \ell\left(v_{k}\right)$.
- $z(f)=\pi\left(v_{i} v_{j}\right) \cap \pi\left(v_{i} v_{k}\right) \cap \pi\left(v_{j} v_{k}\right)$ lies on all lines $\ell\left(v_{i}\right), \ell\left(v_{j}\right), \ell\left(v_{k}\right)$.
- If $f^{\prime}=\left(v_{i} v_{j} v_{l}\right)$ is a neighbor face, then $z(f)=\ell\left(v_{i}\right) \cap \ell\left(v_{j}\right)=z\left(f^{\prime}\right)$.
- Quad meshes are "better" than triangle meshes, as far as complexity of nodes is concerned are concerned

Quad meshes with planar faces

- start of architecture applications of DDG [Liu et al, SIGGRAPH 2006]
- Cannot simply "optimize" a quad mesh for conjugacy (planar faces). Geometric shape determines net to great extent
- Only recently, interactive modelling has become efficient enough for the planarity constraint [Tang et al, SIGGRAPH 2014]

Parallel meshes

- Meshes with planar faces are parallel, if corresponding edges and faces are
- Parallel meshes define a torsion-free support structure, and vice versa.

Constant-distance offsets

- If M, M^{*} are parallel with $M^{*} \approx S^{2}$, vertex-wise linear combination $M^{t}=M+t M^{*}$ yields an offset of M at constant distance t
- M^{*} inscribed in S^{2} - vertex offset
- M^{*} circumscribed
- face offset
- M^{*} midscribed (Koebe)
— edge offset
- existence: 3-system

Constant-distance offsets

- application:
multilayer
constructions
- here: beams of
constant height

The design dilemma

- If Mathematics is involved in the design phase, definite solutions of problems are unwelcome.
- Unique solutions restrict freedom of artistic expression
- Example: Eiffel Tower pavilions

The design dilemma

- Eiffel tower pavilions
- curved beams are developable \& orthogonal to glass surfaces
- \Longrightarrow they follow principal
curvature lines; their layout is defined already by the glass surface
- Solution: impreceptibly change glass until principal curves fit

Freeform architecture: Summary

- DDG occurs in the realization of free forms
- Design dilemma
- Goal for the future: geometry-aware computational design.

Conclusion

- Multidimensional consistency as a discretization principle
- Examples of 2-systems and 3-systems
- Applications within Mathematics
- Applications outside Mathematics

Discretization in
Geometry and Dynamics
SFB Transregio 109

FШF

