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INFORMAL 
AND NOT 

COMPREHENSIVE



FEWER MESHES



A geometric way
to compare 

probability measures.

Monge Kantorovich Dantzig Wasserstein Brenier McCann VillaniOtto

Nobel prize Fields medal
(and French politician)





Resilience to

noise and uncertainty.
Hardly an “implementation detail!”
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Understand geometry from a

“softened” probabilistic
standpoint.

Secondary goal:
Application of machinery from previous talks

(vector fields, geodesics, meshes…)



“Somewhere over here.”



“Exactly here.”



“One of these two places.”



Which is closer, 1 or 2?

Query 1 2
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Which is closer, 1 or 2?

Query 1 2
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Lp norm
KL divergence

15





Which is closer, 1 or 2?

Query 1 2
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Neither!  

Query 1 2
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Measured overlap, 
not displacement.





Smaller bins worsen 
histogram distances



Permuting histogram bins has 

no effect
on these distances.



Image courtesy M. Cuturi

Geometric theory of probability



Compare in this direction

Not in this direction



Match mass from the distributions



Match mass from the distributions

Cost to move mass 𝒎
from 𝒙 to 𝒚:

𝒎 ⋅ 𝒅(𝒙, 𝒚)



Even the laziest shoveler

must do some work.
Property of the distributions themselves!

My house last week!







Triangle inequality when 𝒑 ≥ 𝟏.

Kantorovich problem:
Replace with 𝒄 𝒙, 𝒚 .



Not always well-posed!



When is transport 
computable?

Needed:  Finite number of unknowns.



http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html

PDF [CDF] CDF-1
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“Empirical measures”



“Empirical measures”

Linear program:  Finite number of variables
Algorithms:  Simplex, interior point, auction, …



Never a reason to “leapfrog” mass!
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Monge-Kantorovich Problem

TRICKY 
NOTATION



Function from sets to probability





General transport problem!



Metric when d(x,y) satisfies the 
triangle inequality.

“The Earth Mover's Distance as a Metric for Image Retrieval”
Rubner, Tomasi, and Guibas; IJCV 40.2 (2000):  99—121.

Revised in:
“Ground Metric Learning”

Cuturi and Avis; JMLR 15 (2014)

“Earth Mover’s Distance”



http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Shortest path 
distance

Expectation

Geodesic distance d(x,y)



On the board (time-permitting):
Motivation for discrete duality

Primal

Dual



Benamou & Brenier
“A computational fluid mechanics solution of the

Monge-Kantorovich mass transfer problem”
Numer. Math. 84 (2000), pp. 375-393





¡ Consider set of distributions as an 
infinite-dimensional manifold

¡ Tangent spaces from advection

¡ Geodesics from displacement 
interpolation



Image from [Solomon, Guibas, & Butscher 2013]

Vector field moving 
mass around

Continuity equation:

Fun fact:
v is curl-free!
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Wassersteinization
[wos-ur-stahyn-ahy-sey-shuh-n]
noun.

Introduction of optimal 
transport into a computational 
problem.
cf.  least-squarification, L1ification, deep-netification, kernelization



We have tools to

¡ Solve optimal transport problems 
numerically

¡ Differentiate transport distances in 
terms of their input distributions

Bonus:
Transport cost from 𝝁 to 𝝂 is a 

convex function of 𝝁 and 𝝂.



Minimum-cost flow

-1 +2

-1Supply

Demand

1

1



[Rubner, Tomasi, & Guibas 2000]



[Kusner et al. 2015]

Use deep network embedding

Word Mover’s Distance (WMD)



x y



Proposition: Satisfies triangle inequality.

0 eigenfunctions 100 eigenfunctions



Distance from point cloud to mesh
[Digne et al. 2014]



Image courtesy F. de Goes; photo by F. Durand



Image from optimaldistricts.org



[Bassetti 2006]

Minimum Kantorovich Estimator



Wasserstein ball around 
empirical distribution

Loss function

[Esvahani & Kuhn 2017]



[Courty et al. 2017]

1. Estimate transport map
2. Transport labeled samples to new domain

3. Train classifier on transported labeled samples



EPFL Computer Graphics and Geometry Laboratory; Rayform SA
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Cuturi.  “Sinkhorn distances: Lightspeed computation of optimal transport” (NIPS 2013)

OK to drop 
nonnegative 
constraint!





Prove on the board (time-permitting):



Alternating projection

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". 
Pacific J. Math. 21, 343–348 (1967).



1. Supply vector p
2. Demand vector q

3. Multiplication by K



Gaussian convolution
Fish image from borisfx.com



No need to store 𝑲𝜶



No need to store 𝑲𝜶



“Geodesics in heat”
Crane, Weischedel, and Wardetzky; TOG 2013



Replace 𝑲𝜶 with heat kernel

Solomon et al. "Convolutional Wasserstein 
Distances: Efficient Optimal Transportation on 

Geometric Domains." SIGGRAPH 2015.
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Benamou & Brenier
“A computational fluid mechanics solution of the

Monge-Kantorovich mass transfer problem”
Numer. Math. 84 (2000), pp. 375-393







Advection equation

Momentum Boundary conditions







Transport image from “Optimal Transport with Proximal Splitting” (Papadakis, Peyré, and Oudet) • Grid from http://zone.ni.com/

Benamou-Brenier:
¡ Store 𝐽, 𝜌 on each grid point
¡ Approximate objective function using 

FEM or divided differences

Open problem:
¡ Discretize on a triangle mesh
¡ Preserve triangle inequality

Talk to me if you’re interested!
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In computer science:

Network flow problem



Probabilities advect
along the surface

Solomon, Rustamov, Guibas, and Butscher.
“Earth Mover’s Distances on Discrete Surfaces.”

SIGGRAPH 2014

“Eulerian”



Monge problem solved by gradient of a convex function [Brenier 1991]
à second-order nonlinear elliptic PDE

Image from [Benamou, Froese, & Oberman 2012]
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Never a reason to “leapfrog” mass!



Primal

Dual



https://www.jasondavies.com/power-diagram/



¡ Simple algorithm:  Gradient ascent
Ingredients:  Power diagram

¡ More complex:  Newton’s method
Converges globally [Kitagawa, Mérigot, & Thibert 2016]

Concave in 𝝓!



Points to tetrahedra

Lévy.  “A numerical algorithm for L2 semi-discrete optimal transport in 3D.” (2014)





Method Advantages Disadvantages

Entropic regularization •Fast
•Easy to implement
•Works on mesh using 

heat kernel

•Blurry
•Becomes singular as 
𝜶 → 𝟎

Eulerian optimization •Provides displacement 
interpolation
•Connection to PDE

•Hard to optimize
•Triangle mesh 

formulation unclear

Semidiscrete
optimization

•No regularization
•Connection to 

“classical” geometry

•Expensive 
computational 
geometry algorithms

Many others:
Stochastic transport, dual ascent, Monge-Ampère PDE, …
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Slide courtesy M. Cuturi





𝑣 ∈ 𝑉:

𝑣 ∉ 𝑉:
“Wasserstein Propagation for Semi-Supervised Learning” (Solomon et al.)

“Fast Computation of Wasserstein Barycenters” (Cuturi and Doucet)



Between signals

“No matched 
point should 

travel too far.”



Between 
domains

“Nearby 
points stay 

nearby.”



[Mémoli 2007]



[Mémoli 2007]



Convex 
relaxations 

must fail!



[Solomon et al. 2016]



“Entropic Wasserstein Gradient Flows” [Peyré 2015]



Image from
“Quantum Optimal Transport for Tensor Field Processing”

[Peyré et al. 2017]
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