

Optimal Transport on Discrete Domains

Justin Solomon

What is Optimal Transport?

A geometric way to compare probability measures.

Motivation

What's Missing?

Resilience to noise and uncertainty.

Hardly an "implementation detail!"

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

Our Approach

Understand geometry from a "softened" probabilistic standpoint.

Secondary goal: Application of machinery from previous talks (vector fields, geodesics, meshes...)

Probability as Geometry

"Somewhere over here."

Probability as Geometry

"Exactly here."

Probability as Geometry

"One of these two places."

How to Incorporate Geometry?

Which is closer, 1 or 2?

Fuzzy Version

Which is closer, 1 or 2?

Typical Measurement

Examples

$$d_{L_1}(\rho_0, \rho_1) := \int_{-\infty}^{\infty} |\rho_0(x) - \rho_1(x)| \, dx$$

$$\mathrm{KL}(\rho_0 || \rho_1) := \int_{-\infty}^{\infty} \rho_0(x) \log \frac{\rho_0(x)}{\rho_1(x)} \, dx$$

Returning to the Question

Which is closer, 1 or 2?

Returning to the Question

Neither! Equidistant.

What's Wrong?

Measured overlap, not displacement.

Put Another Way

Figure 2: The distributions ρ_0, \ldots, ρ_4 are equidistant with respect to the L_1 and KL divergences, while the Wasserstein distance from optimal transport increases linearly with distance over \mathbb{R} .

Related Issue

Smaller bins worsen histogram distances

The Root Cause

Permuting histogram bins has **no effect** on these distances.

Optimal Transport

Image courtesy M. Cuturi

Geometric theory of probability

Alternative Idea

Alternative Idea

Match mass from the distributions

Alternative Idea

Match mass from the distributions

Observation

Even the laziest shoveler **must do some work.**

Property of the distributions themselves!

My house last week!

The Setup: Transport in 1D

$\pi(x,y) :=$ Amount moved from x to y

 $\pi(x, y) \ge 0 \ \forall x, y \in \mathbb{R}$ Mass is positive $\int_{\mathrm{Tr}} \pi(x, y) \, dy = \rho_0(x) \; \forall x \in \mathbb{R}$ Must scoop everything up $\int_{\mathbb{R}} \pi(x, y) \, dx = \rho_1(y) \, \forall y \in \mathbb{R}$ Must cover the target

1-Wasserstein in 1D

$$\mathcal{W}_{1}(\rho_{0},\rho_{1}) := \begin{cases} \min_{\pi} & \iint_{\mathbb{R}\times\mathbb{R}} \pi(x,y) | x - y | \, dx \, dy & \text{Minimize total work} \\ \text{s.t.} & \pi \ge 0 \, \forall x, y \in \mathbb{R} & \text{Nonnegative mass} \\ & \int_{\mathbb{R}} \pi(x,y) \, dy = \rho_{0}(x) \, \forall x \in \mathbb{R} & \text{Starts from } \rho_{0} \\ & & \int_{\mathbb{R}} \pi(x,y) \, dx = \rho_{1}(y) \, \forall y \in \mathbb{R} & \text{Ends at } \rho_{1} \end{cases}$$

p-Wasserstein in 1D

 $[\mathcal{W}_{p}(\rho_{0},\rho_{1})]^{p} := \begin{cases} \min_{\pi} & \iint_{\mathbb{R}\times\mathbb{R}} \pi(x,y) | x - y |^{p} \, dx \, dy \\ \text{s.t.} & \pi \geq 0 \, \forall x, y \in \mathbb{R} \\ & \int_{\mathbb{R}} \pi(x,y) \, dy = \rho_{0}(x) \, \forall x \in \mathbb{R} \\ & \int_{\mathbb{R}} \pi(x,y) \, dx = \rho_{1}(y) \, \forall y \in \mathbb{R} \end{cases}$

Triangle inequality when $p \ge 1$.

Monge Formulation

$$\inf_{\phi_{\sharp}\rho_0=\rho_1}\int_{-\infty}^{\infty}c(x,\phi(x))\rho_0(x)\,dx$$

Not always well-posed!

When is transport computable?

Needed: Finite number of unknowns.

In One Dimension: Closed-Form

PDF ► **[CDF**] ► **CDF**⁻¹

$$\mathcal{W}_1(\mu,\nu) = \int_{-\infty}^{\infty} |\mathrm{CDF}(\mu) - \mathrm{CDF}(\nu)| \, d\ell$$
$$\mathcal{W}_2^2(\mu,\nu) = \int_{-\infty}^{\infty} \left(\mathrm{CDF}^{-1}(\mu) - \mathrm{CDF}^{-1}(\nu)\right)^2 \, d\ell$$

In One Dimension: Closed-Form

http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html

Fully-Discrete Transport

Fully-Discrete Transport

$$[\mathcal{W}_{p}(\mu_{0},\mu_{1})]^{p} = \begin{cases} \min_{T \in \mathbb{R}^{k_{0} \times k_{1}}} & \sum_{ij} T_{ij} |x_{0i} - x_{1j}|^{p} \\ \text{s.t.} & T \ge 0 \\ & \sum_{j} T_{ij} = a_{0i} \\ & \sum_{i} T_{ij} = a_{1j} \end{cases}$$

Linear program: Finite number of variables Algorithms: Simplex, interior point, auction, ...

Semidiscrete Transport

$$\mu_0 := \sum_{i=1}^{k_0} a_{0i} \delta_{x_{0i}} \qquad \qquad \mu_1(S) := \int_S \rho_1(x) \, dx$$

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

More General Formulation

Monge-Kantorovich Problem

Probability Measure

 $\mu(X) = 1$ X is the $\mu(S \subseteq X) \in [0, 1]$ domain $\mu\left(\cup_{i\in I} E_i\right) = \sum \mu(E_i)$ $i \in I$

" $\operatorname{Prob}(X)$ "

when E_i disjoint,

I countable

Function from sets to probability

Measure Coupling

 $\mu \in \operatorname{Prob}(X), \nu \in \operatorname{Prob}(Y)$ $\Pi(\mu,\nu) := \left\{ \pi \in \operatorname{Prob}(X \times Y) : \left(\begin{array}{c} \pi(A \times Y) = \mu(A) \\ \pi(X \times B) = \nu(B) \end{array} \right) \right\}$

Analog of transportation matrix

Kantorovich Problem

$$OT(\mu,\nu;c) := \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times Y} c(x,y) \, d\pi(x,y)$$

General transport problem!

Example: Discrete Transport

$$X = \{1, 2, \dots, k_1\}, Y = \{1, 2, \dots, k_2\}$$

 $OT(v, w; C) = \begin{cases} \min_{T \in \mathbb{R}^{k_1 \times k_2}} & \sum_{ij} T_{ij} c_{ij} \\ \text{s.t.} & T \ge 0 \\ & \sum_j T_{ij} = v_i \ \forall i \in \{1, \dots, k_1\} \\ & \sum_i T_{ij} = w_j \ \forall j \in \{1, \dots, k_2\}. \end{cases}$

Metric when d(x,y) satisfies the triangle inequality.

"The Earth Mover's Distance as a Metric for Image Retrieval" Rubner, Tomasi, and Guibas; IJCV 40.2 (2000): 99—121.

> Revised in: **"Ground Metric Learning"** Cuturi and Avis; JMLR 15 (2014)

p-Wasserstein Distance

$$\mathcal{W}_{p}(\mu,\nu) \equiv \min_{\pi \in \Pi(\mu,\nu)} \left(\iint_{X \times X} d(x,y)^{p} d\pi(x,y) \right)^{1/p}$$
Shortest path distance
Expectation

http://www.sciencedirect.com/science/article/pii/S152407031200029X#

Kantorovich Duality

On the board (time-permitting): Motivation for discrete duality

Flow-Based W₂

$$\mathcal{W}_{2}^{2}(\rho_{0},\rho_{1}) = \begin{cases} \inf_{\rho,v} \iint_{M \times [0,1]} \frac{1}{2}\rho(x,t) \|v(x,t)\|^{2} dx dt \\ \text{s.t. } \nabla \cdot (\rho(x,t)v(x,t)) = \frac{\partial \rho(x,t)}{dt} \\ v(x,t) \cdot \hat{n}(x) = 0 \ \forall x \in \partial M \\ \rho(x,0) = \rho_{0}(x) \\ \rho(x,1) = \rho_{1}(x) \end{cases}$$

Benamou & Brenier

"A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem" Numer. Math. 84 (2000), pp. 375-393

Displacement Interpolation

Interpretation

Consider set of distributions as an infinite-dimensional manifold

Tangent spaces from advection

 Geodesics from displacement interpolation

"Tangent Space"

Vector field moving mass around

Continuity equation:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left(\rho \cdot v \right)$$

Fun fact: v is curl-free! $v = \nabla \psi$

Image from [Solomon, Guibas, & Butscher 2013]

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

Wassersteinization

[wos-ur-stahyn-ahy-sey-shuh-n] noun.

Introduction of optimal transport into a computational problem.

cf. least-squarification, L_1 ification, deep-netification, kernelization

Key Ingredients

We have tools to

- Solve optimal transport problems numerically
- Differentiate transport distances in terms of their input distributions

Bonus:

Transport cost from μ to ν is a **convex** function of μ and ν .

Operations and Logistics

Minimum-cost flow

Histograms and Descriptors

[Rubner, Tomasi, & Guibas 2000]

Histograms and Descriptors

Use deep network embedding

[Kusner et al. 2015]

Word Mover's Distance (WMD)

Pointwise Distance

Distance Approximation

Registration and Reconstruction

[Digne et al. 2014]

Distance from point cloud to mesh

Blue Noise and Stippling

$$\min_{x_1,\dots,x_n} \mathcal{W}_2^2\left(\mu, \frac{1}{n}\sum_i \delta_{x_i}\right)$$

Image courtesy F. de Goes; photo by F. Durand

Political Redistricting (?)

Image from optimaldistricts.org

Statistical Estimation

Minimum Kantorovich Estimator

Distributionally Robust Optimization

$$\begin{split} \inf_{x \in \mathbb{X}} \sup_{\mathbb{Q} \in \hat{\mathcal{P}}_N} \mathbb{E}_{\xi \sim \mathbb{Q}}[h(x,\xi)] \\ \text{Wasserstein ball around} \\ \text{empirical distribution} \\ \end{split}$$

6

[Esvahani & Kuhn 2017]

Domain Adaptation

- **1**. Estimate transport map
- 2. Transport labeled samples to new domain
- 3. Train classifier on transported labeled samples

[Courty et al. 2017]

Engineering Design

EPFL Computer Graphics and Geometry Laboratory; Rayform SA

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

3. Discrete/discretized transport

- Entropic regularization
- Eulerian transport
- Semidiscrete transport

4. Extensions

Entropic Regularization

Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport" (NIPS 2013)

Interpretation as Projection

Prove on the board (time-permitting):

$$T = \operatorname{diag}(p) K_{\alpha} \operatorname{diag}(q),$$

where $K_{\alpha} := \exp(-C/\alpha)$

$$\min_{T} \sum_{ij} T_{ij} c_{ij} - \alpha H(T)$$

s.t.
$$\sum_{j} T_{ij} = v_{i}$$

$$\sum_{i} T_{ij} = w_{j}$$

$$H(T) := -\sum_{ij} T_{ij} \log T_{ij}$$

Sinkhorn Algorithm

 $T = \operatorname{diag}(p) K_{\alpha} \operatorname{diag}(q),$ where $K_{\alpha} := \exp(-C/\alpha)$ $p \leftarrow v \oslash (K_{\alpha}q)$ $q \leftarrow w \oslash (K_{\alpha}^{\top}p)$ $\sum_i T_{ij} = w_j$

Sinkhorn & Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". Pacific J. Math. 21, 343–348 (1967).

Alternating projection

Ingredients for Sinkhorn

Supply vector p Demand vector q Multiplication by K

W2 distance: Fast K Product

$$(Kv)_{ij} = \sum_{k\ell} g_{\sigma}(||(i,j) - (k,\ell)||_2) v_{k\ell}$$

Fish image from borisfx.com

Gaussian convolution

Sinkhorn on a Grid

 $p \leftarrow v \oslash (K_{\alpha}q)$ $q \leftarrow w \oslash (K_{\alpha}^{\top} p)$

No need to store K_{α}
Sinkhorn on a Grid

 $p \leftarrow v \oslash (K_{\alpha}q)$ $q \leftarrow w \oslash (K_{\alpha}^{\top}p)$ What about surfaces?

No need to store K_{α}

Geodesic Distances

Recall:

$$d_g(p,q) = \lim_{t \to 0} \sqrt{-4t \log k_{t,p}(q)}$$
 "Varadhan's Theorem"

"Geodesics in heat" Crane, Weischedel, and Wardetzky; TOG 2013

Approximate Sinkhorn

Replace K_{α} with heat kernel

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

Flow-Based W₂

ecall:

$$\mathcal{W}_{2}^{2}(\rho_{0},\rho_{1}) = \begin{cases} \inf_{\rho,v} \iint_{M \times [0,1]} \frac{1}{2}\rho(x,t) \|v(x,t)\|^{2} dx dt \\ \text{s.t. } \nabla \cdot (\rho(x,t)v(x,t)) = \frac{\partial \rho(x,t)}{dt} \\ v(x,t) \cdot \hat{n}(x) = 0 \ \forall x \in \partial M \\ \rho(x,0) = \rho_{0}(x) \\ \rho(x,1) = \rho_{1}(x) \end{cases}$$

Benamou & Brenier

"A computational fluid mechanics solution of the Monge-Kantorovich mass transfer problem" Numer. Math. 84 (2000), pp. 375-393

Contended Displacement Interpolation

Convex Formulation

$$\begin{aligned} & \mathbf{\mathcal{W}}_{2}^{\text{elocity}} \\ & \mathcal{W}_{2}^{2}(\rho_{0},\rho_{1}) = \begin{cases} \inf_{\rho,v} \iint_{M\times[0,1]} \frac{1}{2}\rho(x,t) \|v(x,t)\|^{2} \, dx \, dt \\ \text{s.t. } \nabla \cdot (\rho(x,t)v(x,t)) &= \frac{\partial\rho(x,t)}{dt} \\ v(x,t) \cdot \hat{n}(x) &= 0 \, \forall x \in \partial M \\ \rho(x,0) &= \rho_{0}(x) \\ \rho(x,1) &= \rho_{1}(x) \end{cases} \end{aligned}$$

$$\begin{aligned} & \mathbf{M}^{\text{omentum}} \\ & \mathcal{W}_{2}^{2}(\rho_{0},\rho_{1}) = \begin{cases} \inf_{\rho,v} \iint_{M\times[0,1]} \frac{\|J(x,t)\|_{2}^{2}}{2\rho(x,t)} \, dx \, dt \\ \text{s.t. } \nabla \cdot J(x,t) &= \frac{\partial\rho(x,t)}{dt} \\ J(x,t) \cdot \hat{n}(x) &= 0 \, \forall x \in \partial M \\ \rho(x,0) &= \rho_{0}(x) \\ \rho(x,1) &= \rho_{1}(x) \end{cases} \end{aligned}$$

C

Lemma: Minimax Formulation

$$\frac{\|J\|_2^2}{2\rho} = \begin{cases} \sup_{a,b} a\rho + b^\top J \\ \text{s.t. } a + \frac{\|b\|_2^2}{2} \le 0 \end{cases}$$

$$\inf_{J,\rho} \sup_{a,b,\phi} \int_{0}^{1} \int_{\mathbb{R}^{n}} \left[a(x,t)\rho(x,t) + b(x,t)^{\top}J(x,t) + \phi(x,t) \left(\frac{\partial\rho(x,t)}{\partial t} + \nabla \cdot J(x,t) \right) \right] dA(x) dt \\ + \int_{\mathbb{R}^{n}} \left[\phi(x,1)(\rho_{1}(x) - \rho(x,1)) - \phi(x,0)(\rho_{0}(x) - \rho(x,0)) \right] dA(x) \\ \text{s.t.} \quad a(x,t) + \frac{\|b(x,t)\|_{2}^{2}}{2} \leq 0 \quad \forall x \in \mathbb{R}^{n}, t \in (0,1).$$

Simplification

$$z := \{\rho, J\}$$
$$q := \{a, b\}$$

$$F(q) := \begin{cases} 0 & \text{if } a(x,t) + \frac{\|b(x,t)\|_2^2}{2} \le 0 \ \forall x \in \mathbb{R}^n, t \in (0,1) \\ \infty & \text{otherwise.} \end{cases}$$
$$G(\phi) := \int_{\mathbb{R}^n} (\phi(x,0)\rho_0(x) - \phi(x,1)\rho_1(x)) \, dA(x)$$
Convex

$$\mathcal{W}_2^2(\rho_0, \rho_1) = -\sup_{z \ q, \phi} \left[\underbrace{F(q) + G(\phi) + \langle z, \nabla_{x,t} \phi - q \rangle}_{L_r(\phi, q, z)} \right]$$

Benamou-Brenier Algorithm

$$\begin{split} \mathcal{W}_{2}^{2}(\rho_{0},\rho_{1}) &= -\sup_{z} \inf_{q,\phi} \left[F(q) + G(\phi) + \langle z, \nabla_{x,t}\phi - q \rangle \right] \\ L_{r}(\phi,q,z) \\ F(q) &:= \left\{ \begin{smallmatrix} 0 & \text{if } a(x,t) + \frac{\|b(x,t)\|_{2}^{2}}{2} \leq 0 \ \forall x \in \mathbb{R}^{n}, t \in (0,1) \\ \infty & \text{otherwise.} \end{smallmatrix} \right. \\ G(\phi) &:= \int_{\mathbb{R}^{n}} (\phi(x,0)\rho_{0}(x) - \phi(x,1)\rho_{1}(x)) \, dA(x) \\ \phi^{\ell+1} \leftarrow \arg\min_{\phi} L_{r}(\phi,q^{\ell},z^{\ell}) \quad \begin{array}{c} \text{Global linear PDE} \\ \Delta \phi = \nabla \cdot (z - rq) \\ q^{\ell+1} \leftarrow \arg\min_{q} L_{r}(\phi^{\ell+1},q,z^{\ell}) \\ local \text{ projection} \\ z^{\ell+1} \leftarrow z^{\ell} + r(q - \nabla_{x,t}\phi) \quad \begin{array}{c} \text{Dual ascent} \end{array} \end{split}$$

Discretization

Transport image from "Optimal Transport with Proximal Splitting" (Papadakis, Peyré, and Oudet) • Grid from http://zone.ni.com/

Beckmann Problem: Linear Cost

Simplification for Linear Cost

Simplification for Linear Cost

Beckmann Formulation

Better scaling for sparse graphs!

 $\begin{array}{ll} \min_{T} & \sum_{e} c_{e} |J_{e}| \\ \text{s.t.} & D^{\top} J = p_{1} - p_{0} \end{array}$

In computer science: Network flow problem

Continuous Analog: Beckmann

Probabilities *advect* along the surface

"Eulerian"

$$\mathcal{W}_1(\rho_0, \rho_1) = \begin{cases} \inf_J \int_M \|J(x)\| \, dx \\ \text{s.t. } \nabla \cdot J(x) = \rho_1(x) - \rho_0(x) \\ J(x) \cdot n(x) = 0 \, \, \forall x \in \partial M \end{cases}$$

Solomon, Rustamov, Guibas, and Butscher. "Earth Mover's Distances on Discrete Surfaces." SIGGRAPH 2014

Monge-Ampère PDE

$$\det(H\Psi(x))\rho_1(\nabla\Psi(x)) = \rho_0(x)$$

Monge problem solved by gradient of a convex function [Brenier 1991] → second-order nonlinear elliptic PDE

Image from [Benamou, Froese, & Oberman 2012]

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

Semidiscrete Transport

lecall:

$$\mu_0 := \sum_{i=1}^{k_0} a_{0i} \delta_{x_{0i}} \qquad \qquad \mu_1(S) := \int_S \rho_1(x) \, dx$$

Kantorovich Duality

lecall:

General Case

$$\mu_{0} := \sum_{i=1}^{k} a_{i} \delta_{x_{i}} \qquad \nu(S) := \int_{S} \rho(x) dx$$
On the board:

$$\mathcal{W}_{2}^{2}(\mu, \nu) = \sup_{\phi \in \mathbb{R}^{k}} \sum_{i} \left[a_{i} \phi_{i} + \int_{\operatorname{Lag}_{\phi}^{c}(x_{i})} \rho(y) [c(x_{i}, y) - \phi_{i}] dA(y) \right]$$

$$\operatorname{Lag}_{\phi}^{c}(x_{i}) := \{ y \in \mathbb{R}^{n} : c(x_{i}, y) - \phi_{i} \leq c(x_{j}, y) - \phi_{j} \forall j \neq i \}$$
Power diagram
$$\mathsf{Laguerre}_{\mathsf{cell}}$$

$$\mathsf{Laguerre}_{\mathsf{rell}}$$

$$\mathsf{https://www.jasondavies.com/power-diagram/}$$

Semidiscrete Algorithm

$$\begin{split} F(\phi) &:= \sum_{i} \left[a_{i}\phi_{i} + \int_{\operatorname{Lag}_{\phi}^{c}(x_{i})} \rho(y) [c(x_{i}, y) - \phi_{i}] \, dA(y) \right] \\ \frac{\partial F}{\partial \phi_{i}} &= a_{i} - \int_{\operatorname{Lag}_{\phi}^{c}(x_{i})} \rho(y) \, dA(y) \end{split}$$
Concave in ϕ !

- Simple algorithm: Gradient ascent Ingredients: Power diagram
- More complex: Newton's method
 Converges globally [Kitagawa, Mérigot, & Thibert 2016]

Application

Lévy. "A numerical algorithm for L2 semi-discrete optimal transport in 3D." (2014)

Points to tetrahedra

Application

Redux

Method	Advantages	Disadvantages
Entropic regularization	 Fast Easy to implement Works on mesh using heat kernel 	• Blurry • Becomes singular as $\alpha ightarrow 0$
Eulerian optimization	 Provides displacement interpolation Connection to PDE 	 Hard to optimize Triangle mesh formulation unclear
Semidiscrete optimization	 No regularization Connection to "classical" geometry 	 Expensive computational geometry algorithms

Many others: Stochastic transport, dual ascent, Monge-Ampère PDE, ...

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

Example: Averaging

Euclidean:
$$x^* := \left[\arg\min_{x \in \mathbb{R}^n} \sum_i ||x - x_i||_2^2 \right] = \frac{1}{k} \sum_i x_i$$

 \mathbf{O}^{x^*}

 \bullet^{x_1}

Example: Averaging

Euclidean:
$$x^* := \left[\arg\min_{x \in \mathbb{R}^n} \sum_i ||x - x_i||_2^2 \right] = \frac{1}{k} \sum_i x_i$$

Wassersteinized Averaging

Euclidean:
$$x^* := \left[\arg \min_{x \in \mathbb{R}^n} \sum_i ||x - x_i||_2^2 \right] = \frac{1}{k} \sum_i x_i$$

Wasserstein: $\mu^* := \left[\arg \min_{\mu \in \operatorname{Prob}(\mathbb{R}^n)} \sum_i \mathcal{W}_2^2(\mu, \mu_i) \right]$
 μ^0
"Wasserstein barycenter"
 μ^*

Barycenters

Slide courtesy M. Cuturi

Barycenter Example

Barycenters in Machine Learning

"Wasserstein Propagation for Semi-Supervised Learning" (Solomon et al.)

"Fast Computation of Wasserstein Barycenters" (Cuturi and Doucet)

Model Problem: Linear Assignment

Between signals

 $\begin{array}{ll} \min_{T} & \langle T, D \rangle \\ \text{s.t.} & T \geq 0 \\ & T\mathbf{1} = \mathbf{1} \\ & T^{\top}\mathbf{1} = \mathbf{1} \end{array} \end{array}$

"No matched point should travel too far."

Model Problem: Quadratic Matching

$$\begin{array}{ll} \min_{T} & \langle M_0T, TM_1 \rangle \\ \text{s.t.} & T \geq 0 \\ & T\mathbf{1} = \mathbf{1} \\ & T^\top \mathbf{1} = \mathbf{1} \end{array} \\ \begin{array}{l} \text{onvex quadratic program Between domains} \\ \\ \text{``Nearby points stay nearby.''} \end{array}$$

Gromov-Wasserstein Distance

[Mémoli 2007]

Quadratic Matching

Fundamentally Nonconvex

Convex relaxations *must* fail!

Variety of Correspondence Tasks

Source

[Solomon et al. 2016]

Gradient Flows

"Entropic Wasserstein Gradient Flows" [Peyré 2015]

Matrix Fields and Vector Measures

Image from "Quantum Optimal Transport for Tensor Field Processing" [Peyré et al. 2017]

Plan For Today

1. Introduction to optimal transport

- 1D examples
- Many formulas

2. Applications

- 3. Discrete/discretized transport
 - Entropic regularization
 - Eulerian transport
 - Semidiscrete transport

4. Extensions

Optimal Transport on Discrete Domains

Justin Solomon

