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Surfaces	as	triangulations
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• Triangles	stitched	to	build	a	surface.



Surfaces	as	triangulations
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• Triangles	stitched	to	build	a	surface.

• ! = ($, &, ');	
• $ = )* , & = +*, , ' = -*,. .



Surfaces	as	triangulations
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• ! = ($, &, ')

• Rules	for	stitching	triangles:

1. ! is	a	simplicial	complex.

2. link )* =∪ 789:∈<
+,. is	a	simple	closed	polygon.



Surfaces	as	triangulations
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• Definition. A	surface	triangulation is	a	triplet	! = ($, &, ') satisfying	the	stitching	
rules.

• For	surface	triangulation	with	boundary,	replace	stitching	rule	2	with

2.	link()*) is	a	simple	(closed	or	not)	polygon.



Surfaces	as	triangulations
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• The	boundary	of	surface	triangulation	is	a	1D	simplicial	complex	!= = ($=, &=).

• The	interior	vertices	are	denote	$> = $ ∖ $=.

• Definition.	! = ($, &, ') is	connected	if	it	is	connected	as	a	graph	($, &).	It	is	@-
connected	if	it	cannot	be	disconnected	by	removing	@ − 1 vertices.



Surfaces	as	triangulations
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• Lemma	[Floater	’03].	If	! = ($, &, ') is	3-connected	then	any	interior	vertex	can	
be	connected	to	any	other	vertex	(including	boundary)	with	an	interior	path.



Discrete	mappings
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• Definition. A	simplicial	map	-:! → ℝE is	the	unique	piecewise-linear	extension	of	

a	vertex	map	-F: $ → ℝE.

• When	G = 1 we	call	- a	simplicial	function.
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The	discrete	mapping	problem
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• Problem. Given	two	topologically	equivalent	surface	triangulations	!Q,!R and	a	

set	of	corresponding	landmarks	 H*, S* *∈> ⊂ !Q×!R compute	a	“nice”	

simplicial	homeomorphism	-:!Q → !R.	



The	discrete	mapping	problem
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The	discrete	mapping	problem
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• Difficulty. Requires	finding	a	common	isomorphic	common	triangulation,	a	

combinatorial	problem!	

• Idea. Consider	mapping	!Q,!R to	a	canonical	domain	V,	

-Q:!Q → V and	-R:!R → V and	construct	- as	- = -R
WQ ∘ -Q.

V



The	discrete	mapping	problem
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• Two	questions:

• How	to	choose	V?

• How	to	compute	the	simplicial	map	onto	V?

V



Convex	combination	mappings
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• A	technique	to	map	a	surface	triangulation	to	ℝR.	

• Definition. Given	a	selection	of	a	weight	per	edge	Y*, > 0,	a	convex	combination	

mapping -:! → ℝR is	a	simplicial	map	mapping	each	interior	vertex	)* ∈ $> to	a	
planar	point	N* ∈ ℝR so	that

∑ Y*, N, − N* = 0�
,∈\8 ,

where	\* = ] +*, ∈ & .

• This	property	is	called	convex	combination	property	↔mean	value	property.

N*
N,



Discrete	maximum	principle
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• The	convex	combination	property	is	a	discrete	version	of	the	mean	value	property	

of	hamornic functions.

• Theorem	(Discrete	maximum	principle).	Let	ℎ:! → ℝ be	a	convex	combination	

function	and	! a	3-connected	surface	triangulation.	Let	)* ∈ $>.	Then,
If	ℎ* = min

,
ℎ, or	ℎ* = max

,
ℎ, then	ℎ is	constant.

In	particular	ℎ achieves	its	extreme	point	on	the	boundary.

ℎ*



Convex	combination	mappings
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• CCM	are	in	general	not	homeomorphisms,	e.g.,	the	constant	CCM.

• However,	with	certain	boundary	conditions	and	target	domains	c CCM	are	

guaranteed	to	be	homeomorphic.	

• We	will	explore	a	family	of	such	target	domains:

ℱ = V



ℱ for	homeomorphic	CCM
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First	members	of	ℱ
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• V is	a	convex	polygonal	domain	in	ℝR.

• Hint	from	analysis:

Theorem	[Rado-Kneser-Choquet]:	Let	-: e → ℝR be	a	hamornic map	where	

-|gh is	a	homeomorphism	onto	the	boundary	of	a	convex	region.	Then,	- is	

homeomorphism.	

-e



CCM	into	convex	polygonal	domain
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• Theorem	(Tutte,	Floater).	Let	! = ($, &, ') be	a	3-connected	surface	triangulation	
homeomorphic	to	a	disk.	Let	-:! → ℝR be	a	CCM	such	that	-|ij

is	a	

homeomorphism	to	a	convex	polygon	enclosing	a	domain	Ω.			
Then,	-:! → Ω is	a	homeomorphism.	



Computing	CCM
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!

∑ Y*, N, − N*
�
,∈\8 = 0,					)* ∈ $>

)*

N*

N* = l*,				)* ∈ $=

)*
N*
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Uniqueness
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• Proposition. There	is	a	unique	solution	to	the	linear	system.

• Proof. Consider	a	solution	to	the	homogeneous	system:

Consider	first	coordinate	H* of	N* = (H*, S*).
This	is	a	CCF	hence	satisfies	discrete	maximum	principle.

If	H* ≠ 0 there	is	a	non-zero	value	at	the	boundary,	contradiction.	

∑ Y*, N, − N*
�
,∈\8 = 0,					)* ∈ $>

N* = 0,					)* ∈ $=



?

Other	members	of	ℱ = V 	?

Topology																								Target	domain																																																												

21

?



cone
sector

open

disk

Euclidean	cone	surfaces
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• Definition.	a	compact	surface	V is	a	euclidean cone	surface	if	it	is	a	metric	space	

locally	isometric	to	an	open	disk,	a	cone,	or	a	sector	and	the	number	of	cone	

points	is	finite.	



Euclidean	orbifolds
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• A	subfamily	of	euclidean cone	surfaces.

• Definition. A	euclidean orbifoldV is	a	surface	defined	as	the	quotient	of	ℝR by	a	
symmetry	wallpaper	group	n,	that	is

V= ℝR/n.

• The	point	of	V are	the	orbits	of	n,	that	is	 N = p(N) p ∈ n .



Euclidean	orbifolds
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Symmetry	of	things	[Strauss,	Burgiel,	Conway]
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Euclidean	orbifolds and	their	

fundamental	domains



CCM	into	euclidean orbifolds
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• Theorem	(orbifold Tutte).	Let	! = ($, &, ') be	a	3-connected	surface	
triangulation	homeomorphic	to	one	of	the	euclidean orbifoldsV with	q cones.																									

Let	r = {)t} ⊂ $ be	a	set	of	q distinct	vertices.	

Let	-:! → V be	a	CCM	such	that	the	-|v is	a	bijection	between	r and	the	cones	

of	V.	Then,	-:! → Ω is	a	homeomorphism.	



Computing	CMM	into	an	orbifold

• First,	cut	! = ($, &, ') to	a	disk-type	triangulation	!w = $w, &w, 'w .
• Second,	compute	a	simplicial	map	x:!w → ℝR as	follows.



Computing	

CMM	into	

an	orbifold
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I Y*, N, − N*

�

,∈y8

= 0

Nt = lt

I Y*, N, − N*

�

,∈y8

+ I Y*w,{**w N, − N*w

�

,∈y8|

= 0

N* − lt = {**w N*w − lt

)t Nt
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Computing	CMM	into	an	orbifold

• Lastly,	the	map	-:! → V is	defined	by	- H = [x H ].



30



Example	of	orbifold CCM
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Homeomorphism
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• We	will	outline	the	idea	of	the	proof.

• Let	x:!w → ℝR be	the	solution	to	the	linear	system	previous	described.	

• Step	1.	Build	a	branched	cover	!′′ to	! by	stitching	copies	of	!′ according	to	the	
group	n.	Consider	the	extension	x:!ww → ℝR.	

• Step	2.	Show	x:!ww → ℝR does	not	degenerate	and	maintains	the	orientation	of	

at-least	one	triangle.

• Step	3.	If	x does	not	degenerate	and	maintains	orientation	of	a	triangle,	it	will	also	

not	degenerate	nor	flip	orientation	of	any	neighbor	triangle.

• Step	4.	If	x:!ww → ℝR maintains	orientation	of	all	triangles	it	is	a	homeomorphism.	

Consequently	-:! → V is	a	homeomorphism.	



Homeomorphism
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• Step	1.	Build	a	branched	cover	!′′ to	! by	stitching	copies	of	!′ according	to	the	
group	n.	Consider	the	extension	x:!ww → ℝR.	All	vertices	satisfy	the	CCP.



Homeomorphism
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• Step	2.	We	will	show	a	stronger	claim.	Every	(generic)	point	in	the	plane	is	covered	

by	at-least	one	positively	oriented	triangle.
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Homeomorphism
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• Step	3.	If	x does	not	degenerate	and	maintains	orientation	of	a	triangle,	it	will	also	

not	degenerate	nor	flip	any	neighbor	triangle.



Homeomorphism
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• Step	4.	If	x:!ww → ℝR maintains	orientation	of	all	triangles	it	is	a	homeomorphism.	

Consequently	-:! → V is	a	homeomorphism.	

• Repeat	winding	number	argument	but	now	we	know	that	all	triangles	are	

positively	oriented.	



Comparison	of	CCM
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Variational principle	

39

• When	Y*, = Y,* there	exists	a	variational form	

min
1
2
IY*, N, − N*

R
�

Ä89

s.t. boundary	conditions

• This	energy	is	called	discrete	Dirichlet energy,	&h(N).

• A	popular	choice	of	weights	comes	from	asking	that	&h N = ∫ |ã-|
�
i .

• These	weights	are	called	cotan weights	and	Y*, = cot å*, + cot ç*,.

• The	mesh	is	Delaunay	(å*, + ç*, < è) iff Y*, > 0.



Conformality

40

• The	Dirichlet energy	satisfies:		

&h N = &v N + &ê N

where	&ê is	the	area	functional	summing	positive	areas	of	triangles.

• The	orbifold Tutte theorem	implies	that	&ê N = ë{+ë(V) constant.
• Since	the	number	of	point	constraints	matches	the	degrees	of	freedom	in	

conformal	map	we	can	ask:

Does	-:! →V converge	to	a	conformal	map	under	refinement	of	!?

• Theorem. Convergence	in	íQ holds	for	V a	triangle	orbifold.	If	! is	Delaunay	

uniform	convergence	hold.
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Discrete	uniformization
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[Springborn et	al.	08] Orbifold-Tutte



Discrete	mapping	of	surfaces
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• Back	to	the	discrete	mapping	problem:	we	got	a	solution	for	up-to	4	

landmark	constraints.

• Discrete	extremal	quasiconformal maps….?



Open	problems
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• Problem. Can	ℱ be	enlarged?

• I	am	not	aware	of	such	result.

• Problem. Can	ℱ be	enlarged	under	extra	conditions?	

• Several	interesting	such	results.	See	notes.	



Beyond	euclidean
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• CCM	can	be	generalized	to	hyperbolic	plane.

• Basic	results	(Tutte,	Orbifold Tutte)	still	holds.
• Allows	infinite	number	of	cones.

• Drawback: no	longer	a	linear	model



Beyond	euclidean
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Higher	dimensions?
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• Counter	example	to	Tutte exists.	The	following	example	by	[Floater,	Pham-Trong].



The	end
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