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Surfaces as triangulations

* Triangles stitched to build a surface.




Surfaces as triangulations

* Triangles stitched to build a surface.
M= (V,E,F),

* V={v}E={e;},F = {fi}




Surfaces as triangulations

M= V,E,F)
* Rules for stitching triangles:

1. M is a simplicial complex.
. link(v;) =U(s, er} Gk is a simple closed polygon.
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Surfaces as triangulations

* Definition. A surface triangulation is a triplet M = (V, E, F) satisfying the stitching
rules.

* For surface triangulation with boundary, replace stitching rule 2 with
2.1link(v;) is a simple (closed or not) polygon.
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Surfaces as triangulations

e The boundary of surface triangulation is a 1D simplicial complex Mg = (Vg, Ep).

e The interior vertices are denote V; =V \ V5.

M = (V,E,F) is connected if it is connected as a graph (V, E). It is k-
connected if it cannot be disconnected by removing k — 1 vertices.



Surfaces as triangulations

* Llemma [Floater ‘03] If M = (V, E, F) is 3-connected then any interior vertex can
be connected to any other vertex (including boundary) with an interior path.



Discrete mappings

A simplicial map f: M — R% is the unique piecewise-linear extension of
a vertex map fy:V - R%.

* Whend = 1 we call f a simplicial function.

x—z:lvl - f(x)—ZAul
Alzozz —1



The discrete mapping problem

* Problem. Given two topologically equivalent surface triangulations My, M, and a
set of corresponding landmarks {(x;, ;) };e; € M1 XM, compute a “nice”
simplicial homeomorphism f: M; = M,.




The discrete

mapping problem
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The discrete mapping problem

* Difficulty. Requires finding a common isomorphic common triangulation, a
combinatorial problem!

* |dea. Consider mapping M, M, to a canonical domain IV,
fi:M; > N and f,: M, > NV and construct fasf = f, L o f;.
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The discrete mapping problem

* Two questions:
* How to choose NV'?
* How to compute the simplicial map onto V' ?
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Convex combination mappings

* Atechnigue to map a surface triangulation to R?.

Given a selection of a weight per edge w;; > 0, a convex combination
mapping f: M — R? is a simplicial map mapping each interior vertex v; € V; to a
planar point u; € R? so that

Zjeini Wij(uj - ui) =0,
where N; = {j|eij € E}.

* This property is called convex combination property <
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Discrete maximum principle

* The convex combination property is a discrete version of the mean value property
of hamornic functions.

Let h: M — R be a convex combination
function and M a 3-connected surface triangulation. Let v; € V/;. Then,

If h; = min h; or h; = max h; then h is constant.
J J

In particular h achieves its extreme point on the boundary.
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Convex combination mappings

 CCM are in general not homeomorphisms, e.g., the constant CCM.

* However, with certain boundary conditions and target domains V' CCM are
guaranteed to be homeomorphic.

* We will explore a family of such target domains:

F=1N;



F for homeomorphic CCM
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First members of F

« IV is a convex polygonal domain in R?. Q O m ...
Nt

* Hint from analysis:

Let f: D — R? be a hamornic map where
flap is a homeomorphism onto the boundary of a convex region. Then, f is
homeomorphism.

b f
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CCM into convex polygonal domain

* Theorem (Tutte, Floater). Let M = (V, E, F) be a 3-connected surface triangulation
homeomorphic to a disk. Let f: M — R? be a CCM such that flmyg is a
homeomorphism to a convex polygon enclosing a domain (.

Then, f: M — () is a homeomorphism.
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Computing CCM




Unigueness

There is a unique solution to the linear system.
Consider a solution to the homogeneous system:
ZjEfRi Wl](u] — ul-) — O, V; € VI
Ui = O, Vi (S VB
Consider first coordinate x; of u; = (x;, ;).

This is a CCF hence satisfies discrete maximum principle.
If x; # 0 there is a non-zero value at the boundary, contradiction.
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Other membersof F = {N'}?

Topology Target domain
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Fuclidean cone surfaces

a compact surface IV is a euclidean cone surface if it is a metric space
locally isometric to an open disk, a cone, or a sector and the number of cone
points is finite.

sector




Fuclidean orbifolds

* A subfamily of euclidean cone surfaces.

« Definition. A euclidean orbifold V" is a surface defined as the quotient of R? by a
symmetry wallpaper group G, that is
N=R?/G.

* The point of V' are the orbits of G, that is [u] = {g(u)|g € G}.
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Symmetry of things [Strauss, Burgiel, Conway]



Fuclidean orbifolds and their
fundamental domains




CCM into euclidean orbifolds

* Theorem (orbifold Tutte). Let M = (V, E, F) be a 3-connected surface
triangulation homeomorphic to one of the euclidean orbifolds V' with m cones.
Let C = {v,.} € V be a set of m distinct vertices.

Let f: M — IV be a CCM such that the f|. is a bijection between C and the cones
of V. Then, f: M — () is a homeomorphism.
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Computing CMM into an orbifold

* First,cut M = (V,E, F) to a disk-type triangulation M = (V',E', F").
* Second, compute a simplicial map s: M’ = R? as follows.




Computing
CMM Into
an orbifold

z Wl-j(uj — ui) =0

JEN;
Uc = Pc

28

(ui - pc) = riir(uir - pc)

Z Wl](uJ - ui) + Z Wi,j'l"ii,(u]' — ui,) =0

JEN; JEN;,

u

Pc

BALY
»/




Computing CMM into an orbifold

* Lastly, the map f: M — I is defined by f(x) = [s(x)].







Example of orbifold CCM
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Homeomorphism

* We will outline the idea of the proof.
 Let s: M’ = R? be the solution to the linear system previous described.

Build a branched cover M"' to M by stitching copies of M’ according to the
group G. Consider the extension s: M"" — R?.

Show s: M"" — R? does not degenerate and maintains the orientation of
at-least one triangle.

If s does not degenerate and maintains orientation of a triangle, it will also
not degenerate nor flip orientation of any neighbor triangle.

32

If s: M"" — R? maintains orientation of all triangles it is a homeomorphism.

Consequently f: M — N is a homeomorphism.
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Homeomorphism

« Step 1. Build a branched cover M"' to M by stitching copies of M’ according to the
group G. Consider the extension s: M'" — R?. All vertices satisfy the CCP.
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Homeomorphism

« Step 2. We will show a stronger claim. Every (generic) point in the plane is covered
by at-least one positively oriented triangle.

AN
P
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Homeomorphism

* Step 3. If s does not degenerate and maintains orientation of a triangle, it will also
not degenerate nor flip any neighbor triangle.
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Homeomorphism

+ Step 4. 1f s: M — R? maintains orientation of all triangles it is a homeomorphism.
Consequently f: M — N is a homeomorphism.

e Repeat winding number argument but now we know that all triangles are
positively oriented.
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Comparison of CCM
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Variational principle

When w;; = wj; there exists a variational form

. 1 2
min 52 Wl](u] — ui)
eij

s.t. boundary conditions

This energy is called discrete Dirichlet energy, Ep(u).

A popular choice of weights comes from asking that Ep(u) = fM IVf].

These weights are called cotan weights and w;; = cota;; + cot f3;;.

The mesh is Delaunay (a;; + B;; < m) iff w;; > 0.



40

Conformality

* The Dirichlet energy satisfies:

Ep(u) = Ec(u) + E4(u)
where E, is the area functional summing positive areas of triangles.

* The orbifold Tutte theorem implies that E4,(u) = area(N’) constant.

* Since the number of point constraints matches the degrees of freedom in
conformal map we can ask:

Does f: M — N converge to a conformal map under refinement of M?

Convergence in H! holds for V" a triangle orbifold. If M is Delaunay
uniform convergence hold.



17k
1.084

278k
1.029

1000k
1.018
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Discrete uniformization

[Springborn et al. 08]

Orbifold-Tutte
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Discrete mapping of surfaces

* Back to the discrete mapping problem: we got a solution for up-to 4
landmark constraints.

* Discrete extremal quasiconformal maps....?
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Open problems

Problem. Can F be enlarged?

| am not aware of such result.

Problem. Can F be enlarged under extra conditions?

Several interesting such results. See notes.



Beyond euclidean

CCM can be generalized to hyperbolic plane.
Basic results (Tutte, Orbifold Tutte) still holds.
Allows infinite number of cones.

Drawback: no longer a linear model
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Beyond euclidean




Higher dimensions?

* Counter example to Tutte exists. The following example by [Floater, Pham-Trong].

48



The end
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* https://github.com/noamaig/euclidean_orbifolds

49



