Discrete Mappings

Yaron Lipman
Weizmann Institute of Science

Surfaces as triangulations

- Triangles stitched to build a surface.

Surfaces as triangulations

- Triangles stitched to build a surface.
- $M=(V, E, F)$;
- $V=\left\{v_{i}\right\}, E=\left\{e_{i j}\right\}, F=\left\{f_{i j k}\right\}$.

Surfaces as triangulations

- $M=(V, E, F)$
- Rules for stitching triangles:

1. $\quad M$ is a simplicial complex.
2. $\operatorname{link}\left(v_{i}\right)=\mathrm{U}_{\left\{f_{i j k} \in F\right\}} e_{j k}$ is a simple closed polygon.

Surfaces as triangulations

- Definition. A surface triangulation is a triplet $M=(V, E, F)$ satisfying the stitching rules.
- For surface triangulation with boundary, replace stitching rule 2 with

2. $\operatorname{link}\left(v_{i}\right)$ is a simple (closed or not) polygon.

Surfaces as triangulations

- The boundary of surface triangulation is a 1D simplicial complex $M_{B}=\left(V_{B}, E_{B}\right)$.

- The interior vertices are denote $V_{I}=V \backslash V_{B}$.
- Definition. $M=(V, E, F)$ is connected if it is connected as a graph (V, E). It is k connected if it cannot be disconnected by removing $k-1$ vertices.

Surfaces as triangulations

- Lemma [Floater '03]. If $M=(V, E, F)$ is 3-connected then any interior vertex can be connected to any other vertex (including boundary) with an interior path.

Discrete mappings

- Definition. A simplicial map $f: M \rightarrow \mathbb{R}^{d}$ is the unique piecewise-linear extension of a vertex map $f_{V}: V \rightarrow \mathbb{R}^{d}$.
- When $d=1$ we call f a simplicial function.

$$
\begin{aligned}
& x=\sum_{i} \lambda_{i} v_{i} \mapsto f(x)=\sum_{i} \lambda_{i} u_{i} \\
& \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
\end{aligned}
$$

The discrete mapping problem

- Problem. Given two topologically equivalent surface triangulations M_{1}, M_{2} and a set of corresponding landmarks $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \in I} \subset M_{1} \times M_{2}$ compute a "nice" simplicial homeomorphism $f: M_{1} \rightarrow M_{2}$.

The discrete mapping problem

The discrete mapping problem

- Difficulty. Requires finding a common isomorphic common triangulation, a combinatorial problem!
- Idea. Consider mapping M_{1}, M_{2} to a canonical domain \mathcal{N}, $f_{1}: M_{1} \rightarrow \mathcal{N}$ and $f_{2}: M_{2} \rightarrow \mathcal{N}$ and construct f as $f=f_{2}^{-1} \circ f_{1}$.

The discrete mapping problem

- Two questions:
- How to choose \mathcal{N} ?
- How to compute the simplicial map onto \mathcal{N} ?

Convex combination mappings

- A technique to map a surface triangulation to \mathbb{R}^{2}.
- Definition. Given a selection of a weight per edge $w_{i j}>0$, a convex combination mapping $f: M \rightarrow \mathbb{R}^{2}$ is a simplicial map mapping each interior vertex $v_{i} \in V_{I}$ to a planar point $u_{i} \in \mathbb{R}^{2}$ so that

$$
\sum_{j \in \mathfrak{N}_{i}} w_{i j}\left(u_{j}-u_{i}\right)=0
$$

where $\mathfrak{N}_{i}=\left\{j \mid e_{i j} \in E\right\}$.

- This property is called convex combination property \leftrightarrow mean value property.

Discrete maximum principle

- The convex combination property is a discrete version of the mean value property of hamornic functions.
- Theorem (Discrete maximum principle). Let $h: M \rightarrow \mathbb{R}$ be a convex combination function and M a 3-connected surface triangulation. Let $v_{i} \in V_{I}$. Then, If $h_{i}=\min _{j} h_{j}$ or $h_{i}=\max _{j} h_{j}$ then h is constant.
In particular h achieves its extreme point on the boundary.

Convex combination mappings

- CCM are in general not homeomorphisms, e.g., the constant CCM.

- However, with certain boundary conditions and target domains \mathcal{N} CCM are guaranteed to be homeomorphic.
- We will explore a family of such target domains:

$$
\mathcal{F}=\{\mathcal{N}\}
$$

\mathcal{F} for homeomorphic CCM

First members of \mathcal{F}

- \mathcal{N} is a convex polygonal domain in \mathbb{R}^{2}.

- Hint from analysis:

Theorem [Rado-Kneser-Choquet]: Let $f: D \rightarrow \mathbb{R}^{2}$ be a hamornic map where $\left.f\right|_{\partial D}$ is a homeomorphism onto the boundary of a convex region. Then, f is homeomorphism.

CCM into convex polygonal domain

- Theorem (Tutte, Floater). Let $M=(V, E, F)$ be a 3-connected surface triangulation homeomorphic to a disk. Let $f: M \rightarrow \mathbb{R}^{2}$ be a CCM such that $\left.f\right|_{M_{B}}$ is a homeomorphism to a convex polygon enclosing a domain Ω.
Then, $f: M \rightarrow \Omega$ is a homeomorphism.

Computing CCM

$$
\begin{aligned}
\sum_{j \in \Re_{i}} w_{i j}\left(u_{j}-u_{i}\right) & =0, & v_{i} \in V_{I} \\
u_{i} & =p_{i}, & v_{i} \in V_{B}
\end{aligned}
$$

Uniqueness

- Proposition. There is a unique solution to the linear system.
- Proof. Consider a solution to the homogeneous system:

$$
\begin{aligned}
& \sum_{j \in \mathfrak{N}_{i}} w_{i j}\left(u_{j}-u_{i}\right)=0, v_{i} \in V_{I} \\
& u_{i}=0, \\
& v_{i} \in V_{B}
\end{aligned}
$$

Consider first coordinate x_{i} of $u_{i}=\left(x_{i}, y_{i}\right)$.
This is a CCF hence satisfies discrete maximum principle.
If $x_{i} \neq 0$ there is a non-zero value at the boundary, contradiction.

Other members of $\mathcal{F}=\{\mathcal{N}\}$?

Topology

Target domain

Euclidean cone surfaces

- Definition. a compact surface \mathcal{N} is a euclidean cone surface if it is a metric space locally isometric to an open disk, a cone, or a sector and the number of cone points is finite.

Euclidean orbifolds

- A subfamily of euclidean cone surfaces.
- Definition. A euclidean orbifold \mathcal{N} is a surface defined as the quotient of \mathbb{R}^{2} by a symmetry wallpaper group G, that is

$$
\mathcal{N}=\mathbb{R}^{2} / G
$$

- The point of \mathcal{N} are the orbits of G, that is $[u]=\{g(u) \mid g \in G\}$.

Symmetry of things [Strauss, Burgiel, Conway]

Euclidean orbifolds and their fundamental domains

CCM into euclidean orbifolds

- Theorem (orbifold Tutte). Let $M=(V, E, F)$ be a 3-connected surface triangulation homeomorphic to one of the euclidean orbifolds \mathcal{N} with m cones. Let $C=\left\{v_{c}\right\} \subset V$ be a set of m distinct vertices. Let $f: M \rightarrow \mathcal{N}$ be a CCM such that the $\left.f\right|_{C}$ is a bijection between C and the cones of \mathcal{N}. Then, $f: M \rightarrow \Omega$ is a homeomorphism.

Computing CMM into an orbifold

- First, cut $M=(V, E, F)$ to a disk-type triangulation $M^{\prime}=\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$.
- Second, compute a simplicial map $s: M^{\prime} \rightarrow \mathbb{R}^{2}$ as follows.

Computing CMM into an orbifold

$$
\begin{aligned}
& \sum_{j \in N_{i}} w_{i j}\left(u_{j}-u_{i}\right)=0 \\
& u_{c}=p_{c} \\
& \left(u_{i}-p_{c}\right)=r_{i i \prime}\left(u_{i \prime}-p_{c}\right) \\
& \sum_{j \in N_{i}} w_{i j}\left(u_{j}-u_{i}\right)+\sum_{j \in N_{i \prime}} w_{i, j} r_{i i \prime}\left(u_{j}-u_{i \prime}\right)=0
\end{aligned}
$$

Computing CMM into an orbifold

- Lastly, the map $f: M \rightarrow \mathcal{N}$ is defined by $f(x)=[s(x)]$.

Example of orbifold CCM

Homeomorphism

- We will outline the idea of the proof.
- Let $s: M^{\prime} \rightarrow \mathbb{R}^{2}$ be the solution to the linear system previous described.
- Step 1. Build a branched cover $M^{\prime \prime}$ to M by stitching copies of M^{\prime} according to the group G. Consider the extension $s: M^{\prime \prime} \rightarrow \mathbb{R}^{2}$.
- Step 2. Show $s: M^{\prime \prime} \rightarrow \mathbb{R}^{2}$ does not degenerate and maintains the orientation of at-least one triangle.
- Step 3. If s does not degenerate and maintains orientation of a triangle, it will also not degenerate nor flip orientation of any neighbor triangle.
- Step 4. If $s: M^{\prime \prime} \rightarrow \mathbb{R}^{2}$ maintains orientation of all triangles it is a homeomorphism. Consequently $f: M \rightarrow \mathcal{N}$ is a homeomorphism.

Homeomorphism

- Step 1. Build a branched cover $M^{\prime \prime}$ to M by stitching copies of M^{\prime} according to the group G. Consider the extension $s: M^{\prime \prime} \rightarrow \mathbb{R}^{2}$. All vertices satisfy the CCP.

Homeomorphism

- Step 2. We will show a stronger claim. Every (generic) point in the plane is covered by at-least one positively oriented triangle.

Homeomorphism

- Step 3. If s does not degenerate and maintains orientation of a triangle, it will also not degenerate nor flip any neighbor triangle.

Homeomorphism

- Step 4. If $s: M^{\prime \prime} \rightarrow \mathbb{R}^{2}$ maintains orientation of all triangles it is a homeomorphism. Consequently $f: M \rightarrow \mathcal{N}$ is a homeomorphism.
- Repeat winding number argument but now we know that all triangles are positively oriented.

Comparison of CCM

Variational principle

- When $w_{i j}=w_{j i}$ there exists a variational form

$$
\min \frac{1}{2} \sum_{e_{i j}} w_{i j}\left(u_{j}-u_{i}\right)^{2}
$$

s.t. boundary conditions

- This energy is called discrete Dirichlet energy, $E_{D}(u)$.
- A popular choice of weights comes from asking that $E_{D}(u)=\int_{M}|\nabla f|$.
- These weights are called cotan weights and $w_{i j}=\cot \alpha_{i j}+\cot \beta_{i j}$.
- The mesh is Delaunay $\left(\alpha_{i j}+\beta_{i j}<\pi\right)$ iff $w_{i j}>0$.

Conformality

- The Dirichlet energy satisfies:

$$
E_{D}(u)=E_{C}(u)+E_{A}(u)
$$

where E_{A} is the area functional summing positive areas of triangles.

- The orbifold Tutte theorem implies that $E_{A}(u)=\operatorname{area}(\mathcal{N})$ constant.
- Since the number of point constraints matches the degrees of freedom in conformal map we can ask:

Does $f: M \rightarrow \mathcal{N}$ converge to a conformal map under refinement of M ?

- Theorem. Convergence in H^{1} holds for \mathcal{N} a triangle orbifold. If M is Delaunay uniform convergence hold.

Discrete uniformization

[Springborn et al. 08]
Orbifold-Tutte

Discrete mapping of surfaces

- Back to the discrete mapping problem: we got a solution for up-to 4 landmark constraints.

- Discrete extremal quasiconformal maps....?

Open problems

- Problem. Can \mathcal{F} be enlarged?
- I am not aware of such result.
- Problem. Can \mathcal{F} be enlarged under extra conditions?
- Several interesting such results. See notes.

Beyond euclidean

- CCM can be generalized to hyperbolic plane.
- Basic results (Tutte, Orbifold Tutte) still holds.
- Allows infinite number of cones.
- Drawback: no longer a linear model

Beyond euclidean

Higher dimensions?

- Counter example to Tutte exists. The following example by [Floater, Pham-Trong].

The end

- Funding:
- This work was supported by the Israel Science Foundation (grant No. ISF 1830/17).
- Thanks:
- Course teammates: Keenan, Max, Justin, and Johannes.
- AMS people: Lori, Tom
- You!
- Proof reading and good advice:
- Noam Aigerman, Nadav Dym
- Code:
- https://github.com/noamaig/euclidean_orbifolds

