2018 AMS short course Discrete Differential Geometry

Discrete Mappings

1

Yaron Lipman Weizmann Institute of Science

• Triangles stitched to build a surface.

- Triangles stitched to build a surface.
- M = (V, E, F);
- $V = \{v_i\}, E = \{e_{ij}\}, F = \{f_{ijk}\}.$

- M = (V, E, F)
- Rules for stitching triangles:
 - 1. *M* is a simplicial complex.
 - 2. $\operatorname{link}(v_i) = \bigcup_{\{f_{ijk} \in F\}} e_{jk}$ is a simple closed polygon.

• **Definition**. A surface triangulation is a triplet M = (V, E, F) satisfying the stitching rules.

• For surface triangulation with boundary, replace stitching rule 2 with $2 \cdot link(v_i)$ is a simple (closed or not) polygon.

• The boundary of surface triangulation is a 1D simplicial complex $M_B = (V_B, E_B)$.

- The interior vertices are denote $V_I = V \setminus V_B$.
- Definition. M = (V, E, F) is connected if it is connected as a graph (V, E). It is k-connected if it cannot be disconnected by removing k 1 vertices.

• Lemma [Floater '03]. If M = (V, E, F) is 3-connected then any interior vertex can be connected to any other vertex (including boundary) with an interior path.

Discrete mappings

- Definition. A simplicial map $f: M \to \mathbb{R}^d$ is the unique piecewise-linear extension of a vertex map $f_V: V \to \mathbb{R}^d$.
- When d = 1 we call f a simplicial function.

• Problem. Given two topologically equivalent surface triangulations M_1, M_2 and a set of corresponding landmarks $\{(x_i, y_i)\}_{i \in I} \subset M_1 \times M_2$ compute a "nice" simplicial homeomorphism $f: M_1 \to M_2$.

- Difficulty. Requires finding a common isomorphic common triangulation, a combinatorial problem!
- Idea. Consider mapping M_1, M_2 to a canonical domain \mathcal{N} , $f_1: M_1 \to \mathcal{N}$ and $f_2: M_2 \to \mathcal{N}$ and construct f as $f = f_2^{-1} \circ f_1$.

- Two questions:
 - How to choose \mathcal{N} ?
 - How to compute the simplicial map onto \mathcal{N} ?

Convex combination mappings

- A technique to map a surface triangulation to \mathbb{R}^2 .
- Definition. Given a selection of a weight per edge $w_{ij} > 0$, a convex combination mapping $f: M \to \mathbb{R}^2$ is a simplicial map mapping each interior vertex $v_i \in V_I$ to a planar point $u_i \in \mathbb{R}^2$ so that

$$\sum_{j\in\mathfrak{N}_i}w_{ij}(u_j-u_i)=0,$$

where $\mathfrak{N}_i = \{ j | e_{ij} \in E \}.$

This property is called convex combination property ↔ mean value property.

Discrete maximum principle

- The convex combination property is a discrete version of the mean value property of hamornic functions.
- Theorem (Discrete maximum principle). Let $h: M \to \mathbb{R}$ be a convex combination function and M a 3-connected surface triangulation. Let $v_i \in V_I$. Then, If $h_i = \min_j h_j$ or $h_i = \max_j h_j$ then h is constant.

In particular h achieves its extreme point on the boundary.

Convex combination mappings

• CCM are in general **not homeomorphisms**, e.g., the constant CCM.

- However, with certain **boundary conditions and target domains** ${\cal N}$ CCM are guaranteed to be homeomorphic.
- We will explore a family of such target domains:

$$\mathcal{F} = \{\mathcal{N}\}$$

${\mathcal F}$ for homeomorphic CCM

First members of ${\mathcal F}$

• \mathcal{N} is a convex polygonal domain in \mathbb{R}^2 .

• Hint from analysis:

Theorem [Rado-Kneser-Choquet]: Let $f: D \to \mathbb{R}^2$ be a hamornic map where $f|_{\partial D}$ is a homeomorphism onto the boundary of a convex region. Then, f is homeomorphism.

CCM into convex polygonal domain

• Theorem (Tutte, Floater). Let M = (V, E, F) be a 3-connected surface triangulation homeomorphic to a disk. Let $f: M \to \mathbb{R}^2$ be a CCM such that $f|_{M_B}$ is a homeomorphism to a convex polygon enclosing a domain Ω . Then, $f: M \to \Omega$ is a homeomorphism.

Computing CCM

Uniqueness

- Proposition. There is a unique solution to the linear system.
- Proof. Consider a solution to the homogeneous system:

$$\begin{split} \sum_{j\in\mathfrak{N}_i} w_{ij} \big(u_j - u_i \big) &= 0, \quad v_i \in V_I \\ u_i &= 0, \quad v_i \in V_B \end{split}$$

Consider first coordinate x_i of $u_i = (x_i, y_i)$.

This is a CCF hence satisfies discrete maximum principle.

If $x_i \neq 0$ there is a non-zero value at the boundary, contradiction.

Other members of $\mathcal{F} = \{\mathcal{N}\}$?

Euclidean cone surfaces

• Definition. a compact surface \mathcal{N} is a euclidean cone surface if it is a metric space locally isometric to an open disk, a cone, or a sector and the number of cone points is finite.

Euclidean orbifolds

- A subfamily of euclidean cone surfaces.
- Definition. A euclidean orbifold \mathcal{N} is a surface defined as the quotient of \mathbb{R}^2 by a symmetry wallpaper group G, that is

 $\mathcal{N} = \mathbb{R}^2/G$.

• The point of \mathcal{N} are the orbits of G, that is $[u] = \{g(u) | g \in G\}$.

Euclidean orbifolds and their fundamental domains

CCM into euclidean orbifolds

Theorem (orbifold Tutte). Let M = (V, E, F) be a 3-connected surface triangulation homeomorphic to one of the euclidean orbifolds N with m cones. Let C = {v_c} ⊂ V be a set of m distinct vertices. Let f: M → N be a CCM such that the f|_C is a bijection between C and the cones of N. Then, f: M → Ω is a homeomorphism.

Computing CMM into an orbifold

- First, cut M = (V, E, F) to a disk-type triangulation M' = (V', E', F').
- Second, compute a simplicial map $s: M' \to \mathbb{R}^2$ as follows.

Computing CMM into an orbifold

$$\sum_{j \in N_i} w_{ij} (u_j - u_i) = 0$$

$$u_c = p_c$$

$$(u_i - p_c) = r_{ii'} (u_{i'} - p_c)$$

$$\sum_{j \in N_i} w_{ij} (u_j - u_i) + \sum_{j \in N_{i'}} w_{i'j} r_{ii'} (u_j - u_{i'}) = 0$$

Computing CMM into an orbifold

• Lastly, the map $f: M \to \mathcal{N}$ is defined by f(x) = [s(x)].

Example of orbifold CCM

- We will outline the idea of the proof.
- Let $s: M' \to \mathbb{R}^2$ be the solution to the linear system previous described.
- Step 1. Build a branched cover M'' to M by stitching copies of M' according to the group G. Consider the extension $s: M'' \to \mathbb{R}^2$.
- Step 2. Show $s: M'' \to \mathbb{R}^2$ does not degenerate and maintains the orientation of at-least one triangle.
- Step 3. If *s* does not degenerate and maintains orientation of a triangle, it will also not degenerate nor flip orientation of any neighbor triangle.
- Step 4. If $s: M'' \to \mathbb{R}^2$ maintains orientation of all triangles it is a homeomorphism. Consequently $f: M \to \mathcal{N}$ is a homeomorphism.

• Step 1. Build a branched cover M'' to M by stitching copies of M' according to the group G. Consider the extension $s: M'' \to \mathbb{R}^2$. All vertices satisfy the CCP.

• Step 2. We will show a stronger claim. Every (generic) point in the plane is covered by at-least one positively oriented triangle.

• Step 3. If *s* does not degenerate and maintains orientation of a triangle, it will also not degenerate nor flip any neighbor triangle.

- Step 4. If $s: M'' \to \mathbb{R}^2$ maintains orientation of all triangles it is a homeomorphism. Consequently $f: M \to \mathcal{N}$ is a homeomorphism.
- Repeat winding number argument but now we know that all triangles are positively oriented.

Comparison of CCM

Variational principle

• When $w_{ij} = w_{ji}$ there exists a variational form

min
$$\frac{1}{2} \sum_{e_{ij}} w_{ij} (u_j - u_i)^2$$

s.t. boundary conditions

- This energy is called discrete Dirichlet energy, $E_D(u)$.
- A popular choice of weights comes from asking that $E_D(u) = \int_M |\nabla f|$.
- These weights are called cotan weights and $w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$.
- The mesh is Delaunay $(\alpha_{ij} + \beta_{ij} < \pi)$ iff $w_{ij} > 0$.

Conformality

• The Dirichlet energy satisfies:

$$E_D(u) = E_C(u) + E_A(u)$$

where E_A is the area functional summing positive areas of triangles.

- The orbifold Tutte theorem implies that $E_A(u) = area(\mathcal{N})$ constant.
- Since the number of point constraints matches the degrees of freedom in conformal map we can ask:

Does $f: M \to \mathcal{N}$ converge to a conformal map under refinement of M?

• Theorem. Convergence in H^1 holds for \mathcal{N} a triangle orbifold. If M is Delaunay uniform convergence hold.

Discrete uniformization

[Springborn et al. 08]

Orbifold-Tutte

Discrete mapping of surfaces

• Back to the discrete mapping problem: we got a solution for up-to 4 landmark constraints.

• Discrete extremal quasiconformal maps....?

Open problems

- Problem. Can $\mathcal F$ be enlarged?
- I am not aware of such result.

- Problem. Can $\mathcal F$ be enlarged under extra conditions?
- Several interesting such results. See notes.

Beyond euclidean

- CCM can be generalized to hyperbolic plane.
- Basic results (Tutte, Orbifold Tutte) still holds.
- Allows infinite number of cones.
- Drawback: no longer a linear model

Beyond euclidean

Higher dimensions?

• Counter example to Tutte exists. The following example by [Floater, Pham-Trong].

The end

- Funding:
 - This work was supported by the Israel Science Foundation (grant No. ISF 1830/17).
- Thanks:
 - Course teammates: Keenan, Max, Justin, and Johannes.
 - AMS people: Lori, Tom
 - You!
- Proof reading and good advice:
 - Noam Aigerman, Nadav Dym
- Code:
 - https://github.com/noamaig/euclidean_orbifolds