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Conformal Geometry — Overview
• Schedule:

• Part I: Theory

• (lunch)

• Part II: Applications

• Extremely rich field; barely enough time to scratch the surface (not even quads!)

• Focus on one “small problem” of discretization

• illustrate The Game of DDG

• previously encountered no free lunch situation (curvature)

• this time will see another common theme: rigidity



Motivation: Mapmaking Problem
• How do you make a flat map of the round globe?

• Hard to do!  Like trying to flatten an orange peel…

Impossible without some kind of distortion and/or cutting.



Conformal Mapmaking
• Amazing fact: can always make a map that exactly preserves angles.
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(Very useful for navigation!)



Conformal Mapmaking
• However, areas may be badly distorted…

(Greenland is not bigger than Australia!)



Conformal Geometry
More broadly, conformal geometry is the study of shape 

when one can measure only angle (not length).



Applications of Conformal Geometry Processing
Basic building block for many applications…

TEXTURE MAPPING

SHAPE ANALYSIS3D FABRICATION

CARTOGRAPHY REMESHING

SIMULATION SENSOR NETWORKS



A Small Problem in Discretization
• Given a simplicial disk with a discrete metric, how do 

we define a conformal flattening, i.e., a conformal map 
to the flat Euclidean plane?

• Many possible characterizations in smooth setting…

• But will encounter issue of rigidity / flexibility

– some definitions have fewer degrees of freedom than 
in smooth setting (“too rigid”)

– others have more degrees of freedom (“too flexible”)

– one and only one theory is “just right” (conformal 
equivalence of discrete metrics)

• Other approaches still provide useful perspective—and 
algorithms!



Problem Statement
• An (abstract) simplicial disk is a simplicial 2-complex K = 

(V,E,F) such that the link of every vertex is either a single 
cycle or path.

• A discrete metric on K is an assignment of positive edge 
lengths 𝓁ij > 0 to each edge ij in E such that the triangle 
inequality holds in each triangle, i.e.,

• (Geometrically, can view (K,𝓁) as a piecewise Euclidean surface obtained by gluing 
together Euclidean triangles along edges)



Flexibility of Conformal Flattening
• In the smooth setting, how flexible are 

conformal flattenings of a disk?

• Theorem (Uniformization).  Every 
Riemannian disk (M,g) can be conformally 
mapped to the unit disk in the plane.

• Fact. The space of conformal disk flattenings 
can be parameterized by a real function along 
on the boundary specifying either

(i) the scale factor along the boundary, or

(ii) the target curvature of the boundary.



The Game of DDG
Recall our basic approach to finding new discrete definitions:

1.  Write down several equivalent definitions in the smooth setting.

2. (Try to) apply each smooth definition to a given discrete object.

3. Check which properties of the smooth object are preserved.

The Game



(Some) Smooth Characterizations of Conformal Maps

angle preservation
metric rescaling

preservation of circlesconjugate harmonic
functions

critical points of
Dirichlet energy



(Some) Approaches to Discretization
CHARACTERIZATION DISCRETIZATION / ALGORITHM

Cauchy-Riemann least square conformal maps (LSCM)

Dirichlet energy discrete conformal parameterization (DCP)
genus zero surface conformal mapping (GZ)

angle preservation angle based flattening (ABF)

circle preservation circle packing
circle patterns (CP)

metric rescaling conformal prescription with metric scaling (CPMS)
conformal equivalence of triangle meshes (CETM)

conjugate harmonic boundary first flattening (BFF)



Angle Preservation



Angle Preservation
Let’s start with an elementary definition…

“Conformal maps preserve angles”
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Angle Preservation

Intuitively: f preserves angles & orientation.

It is conformal if it is also immersion, i.e., if



Discrete Angle Preservation
First attempt at a definition for discrete conformal maps:

similarity

Definition. A simplicial map between triangulated 
disks is conformal if it preserves interior angles.



Rigidity of Angle Preservation
Problem: one triangle determines the entire map! (Too “rigid”)

(…But what if the domain has curvature?)



Holomorphic Maps from a Surface to the Plane
Plane to plane:

Surface to plane:



Discrete Angle Preservation (Surface to Plane)
Fact. There is an angle-preserving map from a simplicial disk (K,𝓁) to 
the plane if and only if the angle sum around every interior vertex is 2π.

2π



Discrete Angle Preservation (Sphere)

Theorem (Uniformization). There exists 
a conformal map from any topological 
sphere (M,g) to the unit sphere.

Theorem (Cauchy). Convex polytopes 
with congruent faces are themselves 
congruent.

SMOOTH DISCRETE



Discrete Angle Preservation (Nonconvex)

deform without 
preserving angles optimize angles

angle 
distortion



Least Angle Distortion
• Conclusion: angle preservation is too rigid: in general, an angle-

preserving flattening of a given simplicial disk may not exist.

• Compromise: define discrete conformal flattening as simplicial 
map of least area distortion

• now we get at least one such map

• in general, only one map

• still too rigid!

• still starting point for practical algorithms*
*SHEFFER, DE STURLER, “Parameterization of Faceted Surfaces for Meshing using Angle Based Flattening” (2001)



Cauchy Riemann



Discretization via Cauchy Riemann
• Angle preservation was too rigid

• Why not start from the traditional Cauchy-Riemann equation?

• Perhaps most traditional way to characterize holomorphic maps:

• Idea: simply define discrete conformal maps as piecewise linear maps that are 
holomorphic when restricted to each simplex.



Discretization via Cauchy Riemann
• Put real coordinates ai, bi at each vertex i
• Linearly interpolate over triangles
• Require Cauchy-Riemann to be satisfied in each triangle:

• For most surfaces, will not find any map that satisfies this definition.
• Should not be a surprise!  Only affine holomorphic maps are similarities: i

j

k

(Same as angle preservation.)



Least Square Conformal Maps
• Compromise. As with angle preservation, can still seek “most holomorphic map.”
• Sum residual of Cauchy Riemann over triangles to get least squares conformal energy:

• Fix rigid motion (rotation + scaling in plane) by 
specifying map at two vertices

• Resulting energy is convex and strictly quadratic

• Hence, still too rigid: always get a unique minimizer

• Yet still most commonly-used technique used in practice*
• Why?  Requires only a single linear solve (fast)

*LÉVY, PETITJEAN, RAY, MAILLOT, “Least Squares Conformal Maps for Automatic Texture Atlas Generation” (2011)



Beyond the Basics
• So far, our two most basic approaches have 

failed:

• angle preservation ⇒ too rigid

• piecewise holomorphic ⇒ too rigid

• At this point, starts to become clear that one 
cannot be naïve about discretization

• Really need to think more deeply about 
relationship between smooth & discrete 
geometry



Circle Preservation



Circle Preservation
• Smooth: conformal maps preserve infinitesimal circles
• Discrete: try to preserve circles associated with mesh elements

• First perspective that “really starts to work” (& important early example in DDG)
• Still won't get us all the way there…



Circle Packing
• A circle packing is a collection of 

closed circular disks in the plane 
(or other surface) with mutually 
disjoint interiors.

• To any such collection one can 
associate a graph G = (V,E) where

– each vertex corresponds to a disk

– two vertices are connected by an 
edge if and only if their 
associated disks are tangent



Circle Packing Theorem
• Which graphs admit a circle packing?

• Theorem (Circle Packing). Every planar graph G = (V,E) can be realized as a circle 
packing in the plane.

• Theorem (Koebe 1936). If G is a finite maximal planar graph, then a circle packing of 
G—including the outer face—is unique up to Möbius transformations and reflections.

Möbius



Circle Packing—Algorithm
• Nonlinear problem, but simple iterative algorithm*
• For each vertex i:

• Let 𝜃 be total angle currently covered by k neighbors

• Let r be radius such that k neighbors of radius r also cover 𝜃
• Set new radius of i such that k neighbors of radius r cover 2π

• (Repeat)

*COLLINS, STEPHENSON, “A Circle Packing Algorithm” (2003)



Circle Packing—Gallery



Thurston Circle Packing Conjecture
• W. Thurston (1985): circle packing of a regular hexagonal tiling of a region in the 

plane appears to approximate a smooth conformal map (Riemann map):

• Rodin & Sullivan (1987): for sufficiently small ε, any point z in domain is covered 
by a circle c; map it to the center of the corresponding circle c’ in the target packing.  
This approximation mapping converges to a Riemann mapping as ε ⟶ 0.



Discretization via Circle Packing
• Circle packings start to look like strong candidate for 

discretization of conformal maps on simplicial disks:

• Koebe theorem provides discrete Riemann mapping 
theorem

• maps to disk have same symmetry group as in 
smooth setting (Möbius transformations)

• Major piece still missing: curvature!

• packing based purely on combinatorics ⇒ geometry 
of domain (i.e., discrete metric) completely ignored

• disks w/ same combinatorics but very different 
geometry will be mapped (i.e., packed) in exactly the 
same way

• ⟹ Circle packings are in general too flexible



Curvature from Combinatorics
• Why did circle packing work so well for Riemann 

mapping, but “fails” for conformal flattening?

• Basic insight: combinatorics encodes curvature

• Roughly speaking:

• degree 6 ⟺ K = 0 (Euclidean)

• degree < 6 ⟺ K > 0 (spherical)

• degree > 6 ⟺ K < 0 (hyperbolic)

• In 2D, no trouble constructing initial packing (or 
triangulation) that encodes zero curvature: 
regular hexagons / equilateral triangles



Shape from Combinatorics
• Open question: how can one encode general curved surfaces (not just constant 

curvature) via pure combinatorics?

• Definition?  Algorithms?

• Idea has been (re)discovered* many times…

*ISENBERG, GUMHOLD, GOTSMAN, “Connectivity Shapes” (2001)



Circle Patterns
• Alternatively, could simply incorporate more 

geometric information…

• A circle pattern (vs. packing) associates an angle 
Φij  ∈ [0,2π) to each edge ij ∈ E of a simplicial disk

• Letting B ⊆ E denote set of boundary edges, the 
circle pattern problem seeks a discrete metric 𝓁ij 

such that

• Angles at edges ij ∈ E provide control over boundary curvature
• Can be solved (when feasible) by minimizing a convex energy

– closely connected to variational principles for hyperbolic polyhedra



Discretization via Circle Patterns
• Despite additional geometric information, 

circle patterns still do not provide a 
completely satsifactory discretization:

• on the one hand can now control angle 
along boundary

• however, most simplicial disks cannot be 
flattened (mapped to the plane) while 
preserving intersection angles (too rigid)

• numerical experiments suggest they may 
also be rigid for convex polyhedra in 3-
space (but not nonconvex?) original deformed optimized

original deformed optimized



Circle Patterns
• Despite rigidity, circle patterns can still 

be used for practical algorithms

• As with angles, holomorphic functions, 
find flattening with minimal deviation 
of intersection angles (in L2 sense)

• Naturally allows incorporation of cone 
singularities

• Rather than flatten directly to plane, 
flatten to metric w/ isolated points of 
curvature; then cut & flatten

• Significantly reduce distortion of area
(with cones)

KHAREVYCH, SPRINGBORN, SCHRÖDER, “Discrete Conformal Mappings via Circle Patterns” (2006)

(without cones)



Metric Scaling



Conformally Equivalence of Riemannian Metrics
• Two Riemannian metrics g1, g2 on a manifold 

are conformally equivalent if they are related 
by a positive scaling at each point:

• Idea: define conformal flattening of a simplicial 
disk as conformally equivalent discrete metric 
of zero Gaussian curvature

• Need to define:

1. discrete Gaussian curvature

2. conformal equivalence of discrete metrics



Discrete Metric
Recall that a discrete metric on an abstract simplicial surface 
K = (V,E,F) is simply an assignment of edge lengths

satisfying the triangle inequality in each face, i.e.,

• Naturally associated to a piecewise Euclidean metric obtained by gluing together 
Euclidean triangles (of prescribed length) along shared edges.

• Result is a or cone metric: Gaussian curvature is nonzero only at isolated cone points 
(corresponding to vertices); in this sense, edges are superficial.



Discrete Metric—Visualized



Discrete Metric—Visualized



Discrete Gaussian Curvature
Discrete Gaussian curvature of a vertex i is equal to the angle 
defect, i.e., the deviation of interior angles around the vertex 
from the Euclidean angle sum 2π:

i

j
k

(Angles easily obtained from discrete metric via cosine or half-angle formula.)



Conformal Equivalence of Discrete Metrics

• Initially looks like we are just “aping” the smooth definition

• This notion of discrete conformal equivalence will turn out to provide exactly 
the right amount of flexibility, i.e., it is neither “too rigid” nor “too flexible,” 
but rather “just right.”



Flexibility of Triangles
• For a single triangle, equivalence classes with respect to preservation of interior 

angles are just similarities (too rigid).  What about discrete conformal equivalence?

INTERIOR ANGLES DISCRETE METRICS



Flexibility of Triangles (Proof)



Length Cross Ratio
• Is discrete conformal equivalence too flexible?  All triangles are equivalent!

• However, scale factors are shared by multiple triangles…

• Consider the length cross ratio associated with any interior edge ij:



Length Cross Ratio (Proof)



Discrete Conformal Equivalence
• From here, can develop a rich theory of discrete conformal equivalence 

mirroring many properties found in the smooth setting*
• E.g., cross ratios are preserved by Möbius transformations
• Also have “discrete Teichmüller spaces”:

• discrete metrics :|E|-dimensional
• conformal rescalings: |V|-dimensional
• discrete equivalence classes: |E|-|V| = 6g - 6 + 2|V|
• same as Teichmüller space of genus g w/ |V| punctures

• Connection to hyperbolic polyhedra:
• each Euclidean triangle is ideal hyperbolic triangle in Klein model

• discrete conformal equivalence ⟺ isometries of hyperbolic polyhedron

*BOBENKO, PINKALL, SPRINGBORN, “Discrete conformal maps and ideal hyperbolic polyhedra” (2010)

KLEIN POINCARÉ



Discrete Uniformization
• Still haven’t resolved original problem: how do we define (and ultimately, 

construct) a conformal flattening of a simplicial disk?

• Special case of uniformization: for a given Riemannian metric, find a conformally 
equivalent metric of constant curvature.

• On smooth surfaces, key tool is Yamabe flow (2D Ricci flow )

• For discrete metric, can formulate a very simple discrete Yamabe flow*: at each 
vertex i ∈ V, change in log scale factor ui is proportional to difference between 
target angle sum Θi and current angle sum:

*LUO, “Combinatorial Yamabe Flow on Surfaces” (2004)



Discrete Uniformization—Existence
• Key question: can one always find a conformally equivalent discrete metric with prescribed Gaussian 

curvature (i.e., angle defect)?

• Some key results:

• (Luo 2004) Conjecture: Discrete Yamabe flow will uniformize, w/ sufficient “surgery”

• (Springborn, Schröder, Pinkall 2008) Discrete Yamabe flow comes from convex variational 
principle; use to perform Newton descent (w/ cotan-Laplace as Hessian!)

• (Bobenko, Pinkall, Sprinborn 2010) Connection to variational principles for hyperbolic polyhedra

• (Gu, Guo, Luo, Sun, Wu 2013 & 2014) Existence in hyperbolic (g < 0), toroidal case (g = 0)

• (Springborn 2017) Existence in spherical case

• Key insight: edge flips needed to ensure existence!

• Euclidean, or Ptolemy (hyperbolic)

• More than enough to solve our original problem…!



Summary



Conformal Flattening of a Discrete Disk
• Considered several characterizations:

• angle preservation — too rigid
• piecewise holomorphic — too rigid
• circle preservation — too flexible
• metric scaling — just right

• Several approaches we didn’t cover (see notes)
• harmonic maps
• Hodge star operator
• conjugate harmonic functions
• …

• None seem to provide theory as rich as metric scaling…



Boundary First Flattening
• Recent approach* does however provide exactly the 

right degree of flexibility
• Basic idea:

• first compute map along boundary, then interpolate 
via conjugate harmonic coordinate functions

• boundary data obtained by operators that are 
linear in discrete setting:

• Poincaré-Steklov operators
• (Hilbert transform, Dirichlet-to-Neumann map)

• discrete Cherrier problem
• Since based on linear equations, very 

“practical” (~100x faster than Yamabe; no edge flips)

*SAWHNEY & CRANE, “Boundary First Flattening” (2017)

[DEMO]



Next up: Applications



Thanks!
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