AMS SHORT COURSE
DISCRETE DIFFERENTIAL GEOMETRY

Joint Mathematics Meeting * San Diego, CA * January 2018

DEMO SESSION

AMS SHORT COURSE
DISCRETE DIFFERENTIAL GEOMETRY

Joint Mathematics Meeting ¢ San Diego, CA ¢ January 2018

Demo Session — Querview

e Goal: give participants hands-on experience w/ DDG algorithms
e Implement (in web-based framework):
® discrete curvature
® discrete Laplace-Beltrami
e Experiment:
* geodesic distance
* direction fields

e conformal mapping

Code Framework

e Open source web-based mesh processing framework
e Write/debug algorithms in-browser (JavaScript) I\

e Fast numerical libraries ported from C++

* Why?
* Fasy for students to access

e Easy to share results online GEOMETRY-PROCESSING-JS
 Pretty good performance (within ~2-3x C++)

e Downside: language can be a bit “ugly” (e.¢., no operator overloading)

http://geometry.cs.cmu.edu/js

Qeometry-processing-1s
Two main components (not much more needed for DDG algorithms!):

1. Mesh data structures

— halfedge mesh
—basic file I/ O

2. Numerical linear algebra

— sparse & dense matrices

— fast linear solvers (Eigen/emscripten)

(Several example applications use WebGL for visualization)

Simplifying Assumption: Manifold Triangle Mesh

A simplicial 2-complex is manifold (with boundary) if every edge is
contained in two (or one) triangles, and every vertex is contained in
exactly one edge-connected cycle (or path) of triangles.

nonmanifold edge nonmanifold vertex nonmanifold edge nonmanifold vertex
(boundary edge) (boundary vertex)

Simplifying Assumption: Oriented Triangle Mesh

An orientation of a simplex is an ordering of its vertices, up to even
permutation. A manifold triangle mesh is orientable if its triangles
can be given a globally consistent ordering.

(a,c,b),(c,b,d) (a,b,c),(c,b,d)
C C
a d a d
b b

not consistent consistent

Halfedge Mesh

Definition. Let H be any set with an even number of elements, let p : H — H
be any permutation of H, and let 7 : H — H be a fixed point free involution, i.e.,

non = id and n(h) # h for any h € H. Then (H,p,n) is a halfedge mesh, the
elements of H are called halfedges, the orbits of p are faces, the orbits of 7 are edges,
and the orbits of p o 1 are vertices.

Fact. Every halfedge mesh describes a compact oriented topological surtace.

. /\\
(h(), .« . ,hg) —> (hlz h2/ hO/ h4/ h5/ h3/ h9/ h6/ h7/ h8) / \

“next”

Ys f; hy | e,
h4
(hO/ s e ey h9) Ig (h3/ h6/ h7/ hO/ h8/ h9/ hl/ hZ/ h4/ h5) \\ \ /’
“win” " \/

Smallest examples (two half edges): (images courtesy U. Pinkall)

Practical Halfedge Data Structure

Basic idea: each edge gets split into two half edges.

e Half edges act as “glue” between mesh elements.

e All other elements know only about a single half edge.

class Halfedge

{
Halfedge twin;
Halfedge next;
Vertex vertex;
Edge edge;
Face face;

}i

Halfedge
edge
(_I.
s
|_|
5

vertex

halfedge

edge

class Edge
{

Halfedge halfedge;

}:

class Face

{
Halfedge halfedge;

}i

halfedge \

vertex

class Vertex

{
}i

Halfedge halfedge;

halfedge \

Traversing a Halfedge Mesh

e Key feature of halfedge mesh: easy traversal of nearby elements

e [.q., suppose we want to visit all vertices of a face:

2N

f.halfedge

Face f:;

h.vertex

let h = f.halfedge;

do

{
let u = h.vertex;
// (do something with u)
h h.next;

'
while(h != f.halfedge);

f

\\<<iflfedge.next////77

—_—\

Traversing a Halfedge Mesh

e Similarly, suppose we want to visit all vertices
adjacent to a given vertex:

Vertex v;

let h = v.halfedge;
do V. halfedge

{

u h.twin.vertex;
// (do something with u)

h h.twin.next:
} v.halfedge.twin. next

V. halfedge twin

while(h != v.halfedge);

Activity 1: Discrete Curvature

Curvature of a Stmplicial Surface

e How can we define the curvature of a simplicial surface M?

e One possibility (of many): use curvature of “mollified” surface M.
e take Minkowski sum with ball B, of radius ¢
e derive expression for curvatures (Steiner formula)

* take limit as ¢ goes to zero

v R &
L4A4

Discrete Gaussian Curvature

Total Gaussian curvature of region associated with a vertex i is
equal to the angle defect, i.e., the deviation of interior angles @

———

around the vertex from the Euclidean angle sum 27t

1
A
Ki = 27T — Z()qu
'pq

J

(Intuition: how “flat” is the vertex?)

Discrete Mean Curvature

Total mean curvature of region associated with an edge ij is
equal to half the dihedral angle ¢;; times the edge length ¢ :

1

l‘ Hij .= %QDZ]ZZ]

= H; = 1) 9iili
1]

]

(Intuition: how “bent” is the edge?)

Implementing Discrete Curvature

e Two directories:
e ddg-js_skeleton/ — partial implementation (we’ll fill this one in)
e ddg-js_solution/ — working implementation (for reference)
 Documentation in docs/index.html
e For now, open...

¢ in Chrome: projects/discrete-curvatures-and-normals/index.html

olal Angla Defaci 0.
Culer Characterietic: 2

e in text editor: core/geometry. js Discrete Gurvatures and N
e In geometry. js, search for two methods:

e scalarGaussCurvature(v)

e scalarMeanCurvature (V)

;ﬁ .jSE

Implementing Discrete Gauss Curvature
Ki = 27T — ZQW i

One implementation of scalarGaussCurvature (v):

let angleSum = 0.0;
let h =

do
{

}

let
let
let

let
let
let

angl
h =

v.halfedge;
pi = this.positions[h.vertex];
pj = this.positions[h.next.vertex];
pk = this.positions[h.next.next.vertex];

u = (pj.-minus(pi)).unit();
v = (pk.minus(pi)).unit();
theta = Math.acos(u.dot(v));

eSum += theta;
h.twin.next;

while(h != v.halfedge);

return 2.0*Math.PI - angleSum;

1pq | “

h.twin.next

PJ

Discrete Gaussian Curvature — Visualized

e [f implemented correctly, should look like this:

™.

B |

Debugqing in the Browser

e If it's not working, try taking a look at the debugger

e In Chrome: View—Developer—JavaScript Console

* 10 [w ﬂ Elements Console Sources Network » Q1 : X

Load Mesh Q | top ¥ | | Filter Default levels ¥ o

Export Mesh THREE.WebGLRenderer 87 three.js:20919
@ »Uncaught ReferenceError: asdfjk is not defined geometry.1s:396

Normals Equally Weighted at Geometry.angleDefect (geometry.js:396)

at Geometry.totalAngleDefect (geometry.js:434)

Plot Shaded ¢ at initMesh (index.html:294)
at init (index.html:104)

Show Wireframe B

Close Controls

Implementing Discrete Gauss Curvature

In practice, don’t have to do quite so much work: K;:= 271 — Z 0 Zp 1 i

1pq “

let angleSum = 0.0;

for (let c of v.adjacentCorners()) {
angleSum += this.angle(c);

}

return 2.0*Math.PI - angleSum;

J
(This is the code you’ll find in the reference solution.) \ /

N
_

Implementing Discrete Mean Curvature

This time, start with “high level” implementation:

— 42% i “

let sum = 0.0;

for (let h of v.adjacentHalfedges()) {
sum += 0.25 * this.length(h.edge) * this.dihedralAngle(h);

}

return sum; j

h.twin
h.twi:$>ext

PJ

Discrete Mean Curvature — Visualized

e [f implemented correctly, should look like this: - 10
Load Mesh
P N\ Export Mesh
I+ -
' Show Normals @

Show Wireframe B

(Close Controls

Discrete Principal Curvatures

e Given Gauss curvature K and mean curvature H,
can easily solve for principal curvatures «;1, k2 :

K = xx \) Ky, = H++VH?2-K
H = %(Kl—l—Kz) / x, = H—+vVH?—K
v, y
‘ ’
,'

Try 1t out on some other meshes. ..

(Q: What do you notice about the total Gaussian curvature?)

Activity 2: Discrete Laplace-Beltrami

Discrete Laplace-Beltrami Operator

 Fundamental to geometry, PDEs
e Laplace, Poisson, heat equation, wave equation...
e “Swiss army knife” of geometry processing algorithms

e Fasily discretized via cotan formula:

L — tos t B 1.
A %:(co wjj + co ,BZ])(u] U;)

A; — area of dual cell made by triangle circumcenters

Solving Discrete Equations

e Code for evaluating Laplace-Beltrami not much different from discrete curvatures
e But what about solving an equation, like a Poisson equation Au = f?

e Becomes a system of linear equations (one per vertex):

1
A Z(CO’C ajj + cot Bij) (uj — uj) = f;
1 Z]

* To solve numerically, need to encode as a matrix equation:

Lu="f
L 6 IRT/ZXYZ
uf € R"

n — number of vertices

Meshes and Matrices

e To express Poisson equation in matrix form, first need to index the mesh
e |e., pick a bijection between the vertices and the integers 1, ...,
e Row i of matrix L encodes the linear equation corresponding to vertex i

e E.9., row 5 of the Laplace matrix:

1 2 3 4 5 6 7 8 9
5 lw 0 w w 5w 0 w w 0 0 0 O]

ue R" — (Lu)i — qu(u] — ui)

(w =2cot(/3)/A)

Sparse vs. Dense Matrices

e For large meshes, most entries of Laplace matrix will be zero

e Rather than store all zeros explicitly, encode by “sparse matrix”

* In code: express as list of Triplets

e (value, row, column)

o0 o

* duplicates are summed o o
o o
Y
-

0

0

0

—0.680

—0.680

lll
--
ll
ll
ooo
ll
ll

L B N B B I D D D I D e B D B D D D B B B I D IR B B L B B L D I . S e

LI I R D B B R N B B R DR D B B D DU T B S S R TR B B S B S A D I D T B B

LN D B N D D I B I R B b R DL B R D D B R D D D B D R D D L D R R B B B

.
T T I L T I T I I T e L T T R B

.
. . » P o A L . . L] ‘. . » L] . P -a- + . » L LI b L L D 2 L e D D D B

L L I I I I I N L I L U D T N T I R R R T L D T R D R B

L B D I D e B L B D D S D e D D B B D D R D R B B B B B DR B I I I I L

LN R R R B D D L D B DL D 2 R I D D D D D I D 2 e D D D D D R B D D R B N B

L L L} L] 4. -~ a ’ L) L) L) L L) . . LI B LI L 4

‘. . . L . L] ‘ L - - LB I ‘ . . - . . ‘. L] . . . ‘ . ‘. . . . AR AR sy -

Making the System Symmetric

 Numerically, useful to decompose Laplace matrix L into two parts:
e mass matrix M — diagonal matrix of dual areas A;

o stiffness matrix C — symmetric semidefinite matrix of cotan weights

ZLAZ,Z(COUXZ']' + cot B;;) (u; — u;) | — |\/|_1C
']
e Can now solve Poisson equation w/ efficient solvers for symmetric systems:
lu="f (not symmetric)
< Cu= Mt (symmetric)

(This is how we’ll do it in our code!)

Implementing a Discrete Poisson Equation

e Asbefore, startin ddg-js_skeleton/ (we'll fill this one in)
e Open:
* in web browser: projects/poisson-problem/index.html

e in text editor: core/geometry. js

e Will implement methods to build our two matrices: Poisson Problem
* massMatrix(vertexIndex)

e laplaceMatrix(vertexIndex)

Building the Mass Matrix

Diagonal matrix; just have to build a Triplet for each vertex

massMatrix(vertexIndex) {

let n = this.mesh.vertices.length;

let T = new Triplet(n, n);

for (let v of this.mesh.vertices) {

let i = vertexIndex|[V];

T.addEntry(this.circumcentricDualArea(v), i, 1);

return SparseMatrix.fromTriplet(T);

circumcentricDualArea(v)
(already implemented)

Building the Stiffness Matrix

Similar logic; now just have to loop over neighbors:

let n this.mesh.vertices.length;
let T new Triplet(n, n);
for (let v of this.mesh.vertices) {
let i = vertexIndex|[V];
let sum = le-8;

for (let h of v.adjacentHalfedges()) {

let j = vertexIndex[h.twin.vertex];

let weight = (this.cotan(h)+this.cotan(h.twin))/2;
T.addEntry(-weight, i, j);

sum += weight;

}
T.addEntry(sum, i, i);

}

return SparseMatrix.fromTriplet(T);

(make positive definite, for solver)

L —%(cotoci]- +cotBij), i #]
j£1)7]

J
cotan (h)
(already implemented)

Solving the Poisson Equation

Now just solve linear system (already implemented in scalar-poisson-problem.js):

this.vertexIndex =
indexElements (geometry.mesh.vertices);

M = geometry.massMatrix(this.vertexIndex);

C = geometry.laplaceMatrix(this.vertexIndex);

factoredC = C.chol();

let Mf = this.M.timesDense(f);

let u = factoredC.solvePositiveDefinite (Mf);

return u;

Cu
Cu
Cu

MF
M,
M¥

(Most of the cost is in solving 1st equation;
remaining equations are much cheaper.)

Poisson Equation on a Surface

e Solve for electrostatic potential ¢ corresponding to a given charge density p:

(Open projects/poisson-problem/index.html in web browser) QD p

Activity IlI: Experiment

More Algorithms

e Many more algorithms from DDG can be implemented with
surprisingly little work beyond what you’ve done today

e Common pattern:
— compute some local quantity (e.g., curvature)
— solve a Poisson-like equation
— possibly apply some more local computation
— (or do something like this in an iterative loop)

o [et’s take a look at some examples...

Heat & Curvature Flow

e Poisson equation is stationary solution to heat flow (w /source term)

e Easy to implement heat flow using same matrices:

%u = Au > (I + TC)u* Tt = MU
| e R"*" — identity matrix
T>0 — timestep

e From here, can get mean curvature flow by making two small changes:
— replace u with vertex positions of surface (i.e., surface immersion)

— update matrices M and C every time the surface changes

Mean Curvature Flow

Run from ddg-js solutions/projects/geometric-flow/index.html

(Geodesic Distance

e Can also find geodesic distance to one (or more) source points via a familiar pattern:

\ ‘_ ~ b

EORr aw at on s%
l‘\‘

\‘i Ry S BERE S
‘\: ‘ ‘\. o
[NN

\ Al ‘ r ’
] N
\ ! ; E
b} v ’
\ ‘r‘ 7
N \ / v g - E p
- y - y
".‘ ’/' ’,r -
- -
-~ \ ’ »
~ \ e - - P\ g

- - v ‘.rl__,' ’4

- A AN

;g

- ,v/.f,(.l

<
~

.'u

Algorithm 1 The Heat Method

I. Integrate the heat flow ©w = Aw for some fixed time ¢.
II. Evaluate the vector field X = —Vu/|Vu)|.
[TI. Solve the Poisson equation A¢p =V - X.

for details, see Crane, Weischedel, & Wardetzky, “The Heat Method for Distance Computation” (2017)

(Geodesic Distance

Run from ddg-js solutions/projects/geodesic-distance/index.html

)
\
- y \
. d \
|

Q

for details, see Crane, Weischedel, & Wardetzky, “The Heat Method for Distance Computation” (2017)

Additional Examples

e Many more algorithms boil down to solving Poisson-like equations via cotan-
Laplace matrix:

— conformal flattening (parameterization)

— Helmholtz-Hodge decomposition (vector-field-decomposition)

— direction field w/ prescribed singularities (direction-field-design)
— optimal transport

— shape descriptors

e Take a look at examples in ddg-js_solutions/projects/

Thanks!

e Thanks for participating! Let us know if you have any questions...

(See also: http://geometry.cs.cmu.edu/ddqg)

http://geometry.cs.cmu.edu/ddg

Thanks!

N/ 7\

AMS SHORT COURSE
DISCRETE DIFFERENTIAL GEOMETRY

Joint Mathematics Meeting ¢ San Diego, CA ¢ January 2018

