
AMS SHORT COURSE

DISCRETE DIFFERENTIAL GEOMETRY
Joint Mathematics Meeting • San Diego, CA • January 2018

Joint Mathematics Meeting • San Diego, CA • January 2018

AMS SHORT COURSE

DISCRETE DIFFERENTIAL GEOMETRY

DEMO SESSION

Demo Session—Overview
• Goal: give participants hands-on experience w/ DDG algorithms
• Implement (in web-based framework):

• discrete curvature
• discrete Laplace-Beltrami

• Experiment:
• geodesic distance
• direction fields
• conformal mapping
• …

Code Framework
• Open source web-based mesh processing framework

• Write/debug algorithms in-browser (JavaScript)
• Fast numerical libraries ported from C++

• Why?
• Easy for students to access
• Easy to share results online
• Pretty good performance (within ~2–3x C++)

• Downside: language can be a bit “ugly” (e.g., no operator overloading)

http://geometry.cs.cmu.edu/js

geometry-processing-js
Two main components (not much more needed for DDG algorithms!):

1. Mesh data structures

– halfedge mesh

– basic file I/O

2. Numerical linear algebra

– sparse & dense matrices

– fast linear solvers (Eigen/emscripten)

(Several example applications use WebGL for visualization)

Simplifying Assumption: Manifold Triangle Mesh

nonmanifold edge nonmanifold vertex

A simplicial 2-complex is manifold (with boundary) if every edge is
contained in two (or one) triangles, and every vertex is contained in
exactly one edge-connected cycle (or path) of triangles.

nonmanifold edge
(boundary edge)

nonmanifold vertex
(boundary vertex)

Simplifying Assumption: Oriented Triangle Mesh

An orientation of a simplex is an ordering of its vertices, up to even
permutation. A manifold triangle mesh is orientable if its triangles
can be given a globally consistent ordering.

consistentnot consistent

Halfedge Mesh

v0

e0

e1

e2e3

e4

h0

h1

h6

h7

f0f1

h8

h9

h2

h3
h4

h5

v1

v3 v2
“next”

“twin”

Halfedge Mesh—Example
Smallest examples (two half edges): (images courtesy U. Pinkall)

Practical Halfedge Data Structure

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

class Halfedge
{
 Halfedge twin;
 Halfedge next;
 Vertex vertex;
 Edge edge;
 Face face;
};

class Vertex
{
 Halfedge halfedge;
};

halfedge

vertex

class Edge
{
 Halfedge halfedge;
};ha

lf
ed
ge

ed
ge

class Face
{
 Halfedge halfedge;
};

ha
lf
ed
ge

Face

Basic idea: each edge gets split into two half edges.
• Half edges act as “glue” between mesh elements.
• All other elements know only about a single half edge.

Traversing a Halfedge Mesh
• Key feature of halfedge mesh: easy traversal of nearby elements

• E.g., suppose we want to visit all vertices of a face:

Face f;

let h = f.halfedge;
do
{
 let u = h.vertex;
 // (do something with u)
 h = h.next;
}
while(h != f.halfedge);

f.halfedge

h
h.vertex

f

f.halfedge.next

Traversing a Halfedge Mesh
• Similarly, suppose we want to visit all vertices

adjacent to a given vertex:

Vertex v;

let h = v.halfedge;
do
{
 u = h.twin.vertex;
 // (do something with u)
 h = h.twin.next;
}
while(h != v.halfedge);

v
v.halfedge

v.halfedge.twin

v.halfedge.twin.next

Activity 1: Discrete Curvature

Curvature of a Simplicial Surface
• How can we define the curvature of a simplicial surface M?

• One possibility (of many): use curvature of “mollified” surface Mε

• take Minkowski sum with ball Bε of radius ε

• derive expression for curvatures (Steiner formula)

• take limit as ε goes to zero

Discrete Gaussian Curvature
Total Gaussian curvature of region associated with a vertex i is
equal to the angle defect, i.e., the deviation of interior angles
around the vertex from the Euclidean angle sum 2π:

i

j

k

(Intuition: how “flat” is the vertex?)

Discrete Mean Curvature
Total mean curvature of region associated with an edge ij is
equal to half the dihedral angle 𝜑ij times the edge length 𝓁ij :

𝜑ij

i

j

(Intuition: how “bent” is the edge?)

Implementing Discrete Curvature
• Two directories:

• ddg-js_skeleton/ — partial implementation (we’ll fill this one in)

• ddg-js_solution/ — working implementation (for reference)
• Documentation in docs/index.html

• For now, open…

• in Chrome: projects/discrete-curvatures-and-normals/index.html
• in text editor: core/geometry.js

• In geometry.js, search for two methods:
• scalarGaussCurvature(v)

• scalarMeanCurvature(v)

Implementing Discrete Gauss Curvature
One implementation of scalarGaussCurvature(v):

let angleSum = 0.0; // will accumulate sum of angles
let h = v.halfedge; // start with any halfedge
do
{
 // get vertex positions for current triangle ijk
 // (“this” refers to the currently loaded mesh)
 let pi = this.positions[h.vertex];
 let pj = this.positions[h.next.vertex];
 let pk = this.positions[h.next.next.vertex];

 // compute interior angle at vertex i
 let u = (pj.minus(pi)).unit(); // unit vector from pi to pj
 let v = (pk.minus(pi)).unit(); // unit vector from pi to pk
 let theta = Math.acos(u.dot(v)); // angle between u and v

 angleSum += theta; // accumulate angle sum
 h = h.twin.next; // move to next halfedge
}
while(h != v.halfedge); // stop when we get back to beginning

return 2.0*Math.PI - angleSum; // return defect

h

pj

pk

v

h.twin

h.twin.next

Discrete Gaussian Curvature—Visualized
• If implemented correctly, should look like this:

K

Debugging in the Browser
• If it’s not working, try taking a look at the debugger

• In Chrome: View⟶Developer⟶JavaScript Console

Implementing Discrete Gauss Curvature
In practice, don’t have to do quite so much work:

let angleSum = 0.0; // will accumulate sum of angles

// iterate over “corners” rather than halfedges
// (really just halfedges in disguise…)
for (let c of v.adjacentCorners()) {

angleSum += this.angle(c); // accumulate angle sum
}

return 2.0*Math.PI - angleSum; // return defect

v

c

c.
ne
xt

(This is the code you’ll find in the reference solution.)

Implementing Discrete Mean Curvature
This time, start with “high level” implementation:

h

pj

pk

v

h.twin

h.twin.next

let sum = 0.0; // will accumulate sum

// iterate over outgoing halfedges
for (let h of v.adjacentHalfedges()) {
 sum += 0.25 * this.length(h.edge) * this.dihedralAngle(h);
}

return sum;

Discrete Mean Curvature—Visualized
• If implemented correctly, should look like this:

H

Discrete Principal Curvatures
• Given Gauss curvature K and mean curvature H,

can easily solve for principal curvatures κ1, κ2 :

κ1 κ2

Try it out on some other meshes…
• More meshes in the input/ subdirectory:

(Q: What do you notice about the total Gaussian curvature?)

Activity 2: Discrete Laplace-Beltrami

Discrete Laplace-Beltrami Operator
• Fundamental to geometry, PDEs

• Laplace, Poisson, heat equation, wave equation…

• “Swiss army knife” of geometry processing algorithms

• Easily discretized via cotan formula:

Ai — area of dual cell made by triangle circumcenters

Solving Discrete Equations
• Code for evaluating Laplace-Beltrami not much different from discrete curvatures

• But what about solving an equation, like a Poisson equation ∆u = f ?

• Becomes a system of linear equations (one per vertex):

• To solve numerically, need to encode as a matrix equation:

Lu = f

Meshes and Matrices
• To express Poisson equation in matrix form, first need to index the mesh

• I.e., pick a bijection between the vertices and the integers 1, …, n

• Row i of matrix L encodes the linear equation corresponding to vertex i

• E.g., row 5 of the Laplace matrix:

9

1011

12

1

2

3
4

6

7
8

5

Sparse vs. Dense Matrices
• For large meshes, most entries of Laplace matrix will be zero

• Rather than store all zeros explicitly, encode by “sparse matrix”

• In code: express as list of Triplets

• (value, row, column)

• duplicates are summed

Making the System Symmetric
• Numerically, useful to decompose Laplace matrix L into two parts:

• mass matrix M — diagonal matrix of dual areas Ai

• stiffness matrix C — symmetric semidefinite matrix of cotan weights

• Can now solve Poisson equation w/ efficient solvers for symmetric systems:

(not symmetric)

(symmetric)

(This is how we’ll do it in our code!)

Implementing a Discrete Poisson Equation
• As before, start in ddg-js_skeleton/ (we’ll fill this one in)
• Open:

• in web browser: projects/poisson-problem/index.html
• in text editor: core/geometry.js

• Will implement methods to build our two matrices:
• massMatrix(vertexIndex)

• laplaceMatrix(vertexIndex)

Building the Mass Matrix

// “vertexIndex” specifies the index of each vertex
massMatrix(vertexIndex) {
 // get the number of vertices in the mesh
 let n = this.mesh.vertices.length;

 // initialize a list of triples for an n x n matrix
 let T = new Triplet(n, n);

 // loop over all vertices
 for (let v of this.mesh.vertices) {

 // get the index of this vertex
 let i = vertexIndex[v];

 // create a triplet on the diagonal
 T.addEntry(this.circumcentricDualArea(v), i, i);
 }

 // convert list of triplets to final sparse matrix
 return SparseMatrix.fromTriplet(T);
}

Diagonal matrix; just have to build a Triplet for each vertex

circumcentricDualArea(v)
(already implemented)

Building the Stiffness Matrix

let n = this.mesh.vertices.length;
let T = new Triplet(n, n);
for (let v of this.mesh.vertices) {
 let i = vertexIndex[v]; // get index of this vertex
 let sum = 1e-8; // (helps w/ numerics)

 // iterate over outgoing halfedges
 for (let h of v.adjacentHalfedges()) {
 // get index of neighbor
 let j = vertexIndex[h.twin.vertex];

 // set entry Lij to cotan weight
 let weight = (this.cotan(h)+this.cotan(h.twin))/2;
 T.addEntry(-weight, i, j);

 sum += weight; // accumulate diagonal weight
 }
 T.addEntry(sum, i, i); // set entry Lii
}
// convert list of triplets to final sparse matrix
return SparseMatrix.fromTriplet(T);

Similar logic; now just have to loop over neighbors:

cotan(h)
(already implemented)

cotan(h)

h

(make positive definite, for solver)

Solving the Poisson Equation

// index vertices
this.vertexIndex =
indexElements(geometry.mesh.vertices);

// build mass matrix
M = geometry.massMatrix(this.vertexIndex);

// build and *factor* laplace matrix
// (allows use to efficiently re-solve many
// Poisson equations w/ different right-hand sides)
C = geometry.laplaceMatrix(this.vertexIndex);
factoredC = C.chol(); // Cholesky factorization

// multiply right-hand side by mass matrix
let Mf = this.M.timesDense(f);

// solve linear system(s) using prefactored matrix
let u = factoredC.solvePositiveDefinite(Mf);

return u;

Now just solve linear system (already implemented in scalar-poisson-problem.js):

(Most of the cost is in solving 1st equation;
remaining equations are much cheaper.)

Poisson Equation on a Surface
• Solve for electrostatic potential 𝜑 corresponding to a given charge density ρ:

(Open projects/poisson-problem/index.html in web browser)

Activity III: Experiment

More Algorithms
• Many more algorithms from DDG can be implemented with

surprisingly little work beyond what you’ve done today

• Common pattern:

– compute some local quantity (e.g., curvature)

– solve a Poisson-like equation

– possibly apply some more local computation

– (or do something like this in an iterative loop)

• Let’s take a look at some examples…

Heat & Curvature Flow
• Poisson equation is stationary solution to heat flow (w/source term)
• Easy to implement heat flow using same matrices:

• From here, can get mean curvature flow by making two small changes:

– replace u with vertex positions of surface (i.e., surface immersion)

– update matrices M and C every time the surface changes

Mean Curvature Flow
Run from ddg-js_solutions/projects/geometric-flow/index.html

Geodesic Distance
• Can also find geodesic distance to one (or more) source points via a familiar pattern:

for details, see Crane, Weischedel, & Wardetzky, “The Heat Method for Distance Computation” (2017)

Geodesic Distance
Run from ddg-js_solutions/projects/geodesic-distance/index.html

for details, see Crane, Weischedel, & Wardetzky, “The Heat Method for Distance Computation” (2017)

Additional Examples
• Many more algorithms boil down to solving Poisson-like equations via cotan-

Laplace matrix:

– conformal flattening (parameterization)

– Helmholtz-Hodge decomposition (vector-field-decomposition)

– direction field w/ prescribed singularities (direction-field-design)

– optimal transport

– shape descriptors

– …

• Take a look at examples in ddg-js_solutions/projects/

Thanks!
• Thanks for participating! Let us know if you have any questions…

(See also: http://geometry.cs.cmu.edu/ddg)

http://geometry.cs.cmu.edu/ddg

Thanks!

Joint Mathematics Meeting • San Diego, CA • January 2018

AMS SHORT COURSE

DISCRETE DIFFERENTIAL GEOMETRY

