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Demo Session — Querview

e Goal: give participants hands-on experience w/ DDG algorithms
e Implement (in web-based framework):
® discrete curvature
® discrete Laplace-Beltrami
e Experiment:
* geodesic distance
* direction fields

e conformal mapping




Code Framework

e Open source web-based mesh processing framework
e Write/debug algorithms in-browser (JavaScript) I\

e Fast numerical libraries ported from C++

* Why?
* Fasy for students to access

e Easy to share results online GEOMETRY-PROCESSING-JS
 Pretty good performance (within ~2-3x C++)

e Downside: language can be a bit “ugly” (e.¢., no operator overloading)

http://geometry.cs.cmu.edu/js




Qeometry-processing-1s
Two main components (not much more needed for DDG algorithms!):

1. Mesh data structures

— halfedge mesh
—basic file I/ O

2. Numerical linear algebra

— sparse & dense matrices

— fast linear solvers (Eigen/emscripten)

(Several example applications use WebGL for visualization)




Simplifying Assumption: Manifold Triangle Mesh

A simplicial 2-complex is manifold (with boundary) if every edge is
contained in two (or one) triangles, and every vertex is contained in
exactly one edge-connected cycle (or path) of triangles.

nonmanifold edge nonmanifold vertex nonmanifold edge nonmanifold vertex
(boundary edge) (boundary vertex)



Simplifying Assumption: Oriented Triangle Mesh

An orientation of a simplex is an ordering of its vertices, up to even
permutation. A manifold triangle mesh is orientable if its triangles
can be given a globally consistent ordering.

(a,c,b),(c,b,d) (a,b,c),(c,b,d)
C C
a d a d
b b

not consistent consistent



Halfedge Mesh

Definition. Let H be any set with an even number of elements, let p : H — H
be any permutation of H, and let 7 : H — H be a fixed point free involution, i.e.,

non = id and n(h) # h for any h € H. Then (H,p,n) is a halfedge mesh, the
elements of H are called halfedges, the orbits of p are faces, the orbits of 7 are edges,
and the orbits of p o 1 are vertices.

Fact. Every halfedge mesh describes a compact oriented topological surtace.

. /\\
(h(), .« . ,hg) —> (hlz h2/ hO/ h4/ h5/ h3/ h9/ h6/ h7/ h8) / \

“next”

Ys f; hy | e,
h4
(hO/ s e ey h9) Ig (h3/ h6/ h7/ hO/ h8/ h9/ hl/ hZ/ h4/ h5) \\ \ /’
“win” " \/




Smallest examples (two half edges): (images courtesy U. Pinkall)




Practical Halfedge Data Structure

Basic idea: each edge gets split into two half edges.

e Half edges act as “glue” between mesh elements.

e All other elements know only about a single half edge.

class Halfedge

{
Halfedge twin;
Halfedge next;
Vertex vertex;
Edge edge;
Face face;

}i

Halfedge
edge
(_I.
s
|_|
5

vertex

halfedge

edge

class Edge
{

Halfedge halfedge;

}:

class Face

{
Halfedge halfedge;

}i

halfedge \

vertex

class Vertex

{
}i

Halfedge halfedge;

halfedge \




Traversing a Halfedge Mesh

e Key feature of halfedge mesh: easy traversal of nearby elements

e [.q., suppose we want to visit all vertices of a face:

2N

f.halfedge

Face f:;

h.vertex

let h = f.halfedge;

do

{
let u = h.vertex;
// (do something with u)
h h.next;

'
while( h != f.halfedge );

f

\\<<iflfedge.next////77

—_—\




Traversing a Halfedge Mesh

e Similarly, suppose we want to visit all vertices
adjacent to a given vertex:

Vertex v;

let h = v.halfedge;
do V. halfedge

{

u h.twin.vertex;
// (do something with u)

h h.twin.next:
} v.halfedge.twin. next

V. halfedge twin

while( h != v.halfedge );




Activity 1: Discrete Curvature



Curvature of a Stmplicial Surface

e How can we define the curvature of a simplicial surface M?

e One possibility (of many): use curvature of “mollified” surface M.
e take Minkowski sum with ball B, of radius ¢
e derive expression for curvatures (Steiner formula)

* take limit as ¢ goes to zero

v R &
L4A4



Discrete Gaussian Curvature

Total Gaussian curvature of region associated with a vertex i is
equal to the angle defect, i.e., the deviation of interior angles @

———

around the vertex from the Euclidean angle sum 27t

1
A
Ki = 27T — Z()qu
'pq

J

(Intuition: how “flat” is the vertex?)



Discrete Mean Curvature

Total mean curvature of region associated with an edge ij is
equal to half the dihedral angle ¢;; times the edge length ¢ :

1

l‘ Hij .= %QDZ]ZZ]

= H; = 1) 9iili
1]

]

(Intuition: how “bent” is the edge?)



Implementing Discrete Curvature

e Two directories:
e ddg-js_skeleton/ — partial implementation (we’ll fill this one in)
e ddg-js_solution/ — working implementation (for reference)
 Documentation in docs/index.html
e For now, open...

¢ in Chrome: projects/discrete-curvatures-and-normals/index.html

olal Angla Defaci 0.
Culer Characterietic: 2

e in text editor: core/geometry. js Discrete Gurvatures and N
e In geometry. js, search for two methods:

e scalarGaussCurvature(v)

e scalarMeanCurvature (V)

;ﬁ .jSE




Implementing Discrete Gauss Curvature
Ki = 27T — ZQW i

One implementation of scalarGaussCurvature (v):

let angleSum = 0.0;
let h =

do
{

}

let
let
let

let
let
let

angl
h =

v.halfedge;
pi = this.positions[h.vertex];
pj = this.positions[h.next.vertex];
pk = this.positions[h.next.next.vertex];

u = (pj.-minus(pi)).unit();
v = (pk.minus(pi)).unit();
theta = Math.acos( u.dot(v) );

eSum += theta;
h.twin.next;

while( h != v.halfedge );

return 2.0*Math.PI - angleSum;

1pq | “

h.twin.next

PJ




Discrete Gaussian Curvature — Visualized

e [f implemented correctly, should look like this:

™.

B |




Debugqing in the Browser

e If it's not working, try taking a look at the debugger

e In Chrome: View—Developer—JavaScript Console

* 10 [w ﬂ Elements Console Sources Network » Q1 : X

Load Mesh Q | top ¥ | | Filter Default levels ¥ o

Export Mesh THREE.WebGLRenderer 87 three.js:20919
@ »Uncaught ReferenceError: asdfjk is not defined geometry.1s:396

Normals Equally Weighted at Geometry.angleDefect (geometry.js:396)

at Geometry.totalAngleDefect (geometry.js:434)

Plot Shaded ¢ at initMesh (index.html:294)
at init (index.html:104)

Show Wireframe B

Close Controls




Implementing Discrete Gauss Curvature

In practice, don’t have to do quite so much work: K;:= 271 — Z 0 Zp 1 i

1pq “

let angleSum = 0.0;

for (let c of v.adjacentCorners()) {
angleSum += this.angle(c);

}

return 2.0*Math.PI - angleSum;

J
(This is the code you’ll find in the reference solution.) \ /

N
_




Implementing Discrete Mean Curvature

This time, start with “high level” implementation:

— 42% i “

let sum = 0.0;

for (let h of v.adjacentHalfedges()) {
sum += 0.25 * this.length(h.edge) * this.dihedralAngle(h);

}

return sum; j

h.twin
h.twi:$>ext

PJ




Discrete Mean Curvature — Visualized

e [f implemented correctly, should look like this: - 10
Load Mesh
P N\ Export Mesh
I+ -
' Show Normals @

Show Wireframe B

( Close Controls



Discrete Principal Curvatures

e Given Gauss curvature K and mean curvature H,
can easily solve for principal curvatures «;1, k2 :

K = xx \) Ky, = H++VH?2-K
H = %(Kl—l—Kz) / x, = H—+vVH?—K
v, y
‘ ’
,'



Try 1t out on some other meshes. ..

(Q: What do you notice about the total Gaussian curvature?)



Activity 2: Discrete Laplace-Beltrami



Discrete Laplace-Beltrami Operator

 Fundamental to geometry, PDEs
e Laplace, Poisson, heat equation, wave equation...
e “Swiss army knife” of geometry processing algorithms

e Fasily discretized via cotan formula:

L — tos t B 1.
A %:(co wjj + co ,BZ])(u] U;)

A; — area of dual cell made by triangle circumcenters



Solving Discrete Equations

e Code for evaluating Laplace-Beltrami not much different from discrete curvatures
e But what about solving an equation, like a Poisson equation Au = f?

e Becomes a system of linear equations (one per vertex):

1
A Z(CO’C ajj + cot Bij) (uj — uj) = f;
1 Z]

* To solve numerically, need to encode as a matrix equation:

Lu="f
L 6 IRT/ZXYZ
uf € R"

n — number of vertices



Meshes and Matrices

e To express Poisson equation in matrix form, first need to index the mesh
e |e., pick a bijection between the vertices and the integers 1, ...,
e Row i of matrix L encodes the linear equation corresponding to vertex i

e E.9., row 5 of the Laplace matrix:

1 2 3 4 5 6 7 8 9
5 lw 0 w w 5w 0 w w 0 0 0 O]

ue R" — (Lu)i — qu(u] — ui)

(w =2cot(/3)/A)



Sparse vs. Dense Matrices

e For large meshes, most entries of Laplace matrix will be zero

e Rather than store all zeros explicitly, encode by “sparse matrix”

* In code: express as list of Triplets

e (value, row, column)

o0 o

* duplicates are summed o o
o o
Y
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Making the System Symmetric

 Numerically, useful to decompose Laplace matrix L into two parts:
e mass matrix M — diagonal matrix of dual areas A;

o stiffness matrix C — symmetric semidefinite matrix of cotan weights

ZLAZ,Z(COUXZ']' + cot B;;) (u; — u;) | — |\/|_1C
']
e Can now solve Poisson equation w/ efficient solvers for symmetric systems:
lu="f (not symmetric)
< Cu= Mt (symmetric)

(This is how we’ll do it in our code!)



Implementing a Discrete Poisson Equation

e Asbefore, startin ddg-js_skeleton/ (we'll fill this one in)
e Open:
* in web browser: projects/poisson-problem/index.html

e in text editor: core/geometry. js

e Will implement methods to build our two matrices:  Poisson Problem
* massMatrix(vertexIndex)

e laplaceMatrix(vertexIndex)




Building the Mass Matrix

Diagonal matrix; just have to build a Triplet for each vertex

massMatrix(vertexIndex) {

let n = this.mesh.vertices.length;

let T = new Triplet(n, n);

for (let v of this.mesh.vertices) {

let i = vertexIndex|[V];

T.addEntry(this.circumcentricDualArea(v), i, 1);

return SparseMatrix.fromTriplet(T);

circumcentricDualArea(v)
(already implemented)



Building the Stiffness Matrix

Similar logic; now just have to loop over neighbors:

let n this.mesh.vertices.length;
let T new Triplet(n, n);
for (let v of this.mesh.vertices) {
let i = vertexIndex|[V];
let sum = le-8;

for (let h of v.adjacentHalfedges()) {

let j = vertexIndex[h.twin.vertex];

let weight = (this.cotan(h)+this.cotan(h.twin))/2;
T.addEntry(-weight, i, j);

sum += weight;

}
T.addEntry(sum, i, i);

}

return SparseMatrix.fromTriplet(T);

(make positive definite, for solver)

L —%(cotoci]- +cotBij), i #]
j£1 )7 ]

J
cotan (h)
(already implemented)



Solving the Poisson Equation

Now just solve linear system (already implemented in scalar-poisson-problem.js):

this.vertexIndex =
indexElements (geometry.mesh.vertices);

M = geometry.massMatrix(this.vertexIndex);

C = geometry.laplaceMatrix(this.vertexIndex);

factoredC = C.chol();

let Mf = this.M.timesDense(f);

let u = factoredC.solvePositiveDefinite (Mf);

return u;

Cu
Cu
Cu

MF
M,
M¥

(Most of the cost is in solving 1st equation;
remaining equations are much cheaper.)



Poisson Equation on a Surface

e Solve for electrostatic potential ¢ corresponding to a given charge density p:

(Open projects/poisson-problem/index.html in web browser) QD p



Activity IlI: Experiment



More Algorithms

e Many more algorithms from DDG can be implemented with
surprisingly little work beyond what you’ve done today

e Common pattern:
— compute some local quantity (e.g., curvature)
— solve a Poisson-like equation
— possibly apply some more local computation
— (or do something like this in an iterative loop)

o [ et’s take a look at some examples...




Heat & Curvature Flow

e Poisson equation is stationary solution to heat flow (w /source term)

e Easy to implement heat flow using same matrices:

%u = Au > (I + TC)u* Tt = MU
| e R"*" — identity matrix
T>0 — timestep

e From here, can get mean curvature flow by making two small changes:
— replace u with vertex positions of surface (i.e., surface immersion)

— update matrices M and C every time the surface changes



Mean Curvature Flow

Run from ddg-js solutions/projects/geometric-flow/index.html




(Geodesic Distance

e Can also find geodesic distance to one (or more) source points via a familiar pattern:
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Algorithm 1 The Heat Method

I. Integrate the heat flow ©w = Aw for some fixed time ¢.
II. Evaluate the vector field X = —Vu/|Vu)|.
[TI. Solve the Poisson equation A¢p =V - X.

for details, see Crane, Weischedel, & Wardetzky, “The Heat Method for Distance Computation” (2017)



(Geodesic Distance

Run from ddg-js solutions/projects/geodesic-distance/index.html

)
\
- y \
. d \
|

Q

for details, see Crane, Weischedel, & Wardetzky, “The Heat Method for Distance Computation” (2017)



Additional Examples

e Many more algorithms boil down to solving Poisson-like equations via cotan-
Laplace matrix:

— conformal flattening (parameterization)

— Helmholtz-Hodge decomposition (vector-field-decomposition)

— direction field w/ prescribed singularities (direction-field-design)
— optimal transport

— shape descriptors

e Take a look at examples in ddg-js_solutions/projects/



Thanks!

e Thanks for participating! Let us know if you have any questions...

(See also: http://geometry.cs.cmu.edu/ddqg)



http://geometry.cs.cmu.edu/ddg

Thanks!

N/ 7\
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