

AMS Short Course Discrete Differential Geometry

Joint Mathematics Meeting•San Diego, CA • January 2018

DEMO SESSION

AMS Short Course Discrete Differential Geometry

Joint Mathematics Meeting•San Diego, CA•January 2018

Demo Session-Overview

- Goal: give participants hands-on experience w/ DDG algorithms
- Implement (in web-based framework):
- discrete curvature
- discrete Laplace-Beltrami
- Experiment:
- geodesic distance
- direction fields
- conformal mapping

Code Framework

- Open source web-based mesh processing framework
- Write / debug algorithms in-browser (JavaScript)
- Fast numerical libraries ported from C++
- Why?
- Easy for students to access
- Easy to share results online

GEOMETRY-PROCESSING-JS

- Pretty good performance (within $\sim 2-3 x \mathrm{C}++$)
- Downside: language can be a bit "ugly" (e.g., no operator overloading)
http://geometry.cs.cmu.edu/js

geometry-processing-js

Two main components (not much more needed for DDG algorithms!):

1. Mesh data structures

- halfedge mesh
- basic file I/O

2. Numerical linear algebra

- sparse \mathcal{E} dense matrices
- fast linear solvers (Eigen/emscripten)

(Several example applications use WebGL for visualization)

Simplifying Assumption: Manifold Triangle Mesh

A simplicial 2-complex is manifold (with boundary) if every edge is contained in two (or one) triangles, and every vertex is contained in exactly one edge-connected cycle (or path) of triangles.

nonmanifold edge

nonmanifold vertex

nonmanifold edge (boundary edge)

nonmanifold vertex (boundary vertex)

Simplifying Assumption: Oriented Triangle Mesh

An orientation of a simplex is an ordering of its vertices, up to even permutation. A manifold triangle mesh is orientable if its triangles can be given a globally consistent ordering.

not consistent

$$
(a, b, c),(c, b, d)
$$

consistent

Halfedge Mesh

Definition. Let H be any set with an even number of elements, let $\rho: H \rightarrow H$ be any permutation of H, and let $\eta: H \rightarrow H$ be a fixed point free involution, i.e., $\eta \circ \eta=$ id and $\eta(h) \neq h$ for any $h \in H$. Then (H, ρ, η) is a halfedge mesh, the elements of H are called halfedges, the orbits of ρ are faces, the orbits of η are edges, and the orbits of $\rho \circ \eta$ are vertices.

Fact. Every halfedge mesh describes a compact oriented topological surface.

$$
\begin{aligned}
& \left(h_{0}, \ldots, h_{9}\right) \underset{\text { "next" }}{\stackrel{\rho}{\rightarrow}\left(h_{1}, h_{2}, h_{0}, h_{4}, h_{5}, h_{3}, h_{9}, h_{6}, h_{7}, h_{8}\right)} \\
& \left(h_{0}, \ldots, h_{9}\right) \underset{\text { "twin" }}{\stackrel{\eta}{\longrightarrow}}\left(h_{3}, h_{6}, h_{7}, h_{0}, h_{8}, h_{9}, h_{1}, h_{2}, h_{4}, h_{5}\right)
\end{aligned}
$$

Halfedge Mesh - Example

Smallest examples (two half edges):

Practical Halfedge Data Structure

Basic idea: each edge gets split into two half edges.

- Half edges act as "glue" between mesh elements.
- All other elements know only about a single half edge.

Traversing a Halfedge Mesh

- Key feature of halfedge mesh: easy traversal of nearby elements
- E.g., suppose we want to visit all vertices of a face:

Face f;

let $h=f . h a l f e d g e ;$
do
\{
let $u=h . v e r t e x ;$
// (do something with u)
h = h. next;
\}
while(h != f.halfedge);

Traversing a Halfedge Mesh

- Similarly, suppose we want to visit all vertices adjacent to a given vertex:

```
Vertex v;
let h = v.halfedge;
do
{
    u = h.twin.vertex;
    // (do something with u)
    h = h.twin.next;
}
while( h != v.halfedge );
```


Activity 1: Discrete Curvature

Curvature of a Simplicial Surface

- How can we define the curvature of a simplicial surface M ?
- One possibility (of many): use curvature of "mollified" surface M_{ε}
- take Minkowski sum with ball B_{ε} of radius ε
- derive expression for curvatures (Steiner formula)
- take limit as ε goes to zero

Discrete Gaussian Curvature

Total Gaussian curvature of region associated with a vertex i is equal to the angle defect, i.e., the deviation of interior angles around the vertex from the Euclidean angle sum 2π :

$$
K_{i}:=2 \pi-\sum_{i p q} \theta_{i}^{p q}
$$

(Intuition: how "flat" is the vertex?)

Discrete Mean Curvature

Total mean curvature of region associated with an edge $i j$ is equal to half the dihedral angle $\varphi_{i j}$ times the edge length ℓ_{ij} :

$$
H_{i j}:=\frac{1}{2} \varphi_{i j} \ell_{i j}
$$

$$
\Rightarrow H_{i}:=\frac{1}{4} \sum_{i j} \varphi_{i j} \ell_{i j}
$$

(Intuition: how "bent" is the edge?)

Implementing Discrete Curvature

- Two directories:
- ddg-js_skeleton/ - partial implementation (we'll fill this one in)
- ddg-js_solution/ - working implementation (for reference)
- Documentation in docs/index.html
- For now, open...
- in Chrome: projects/discrete-curvatures-and-normals/index.html
- in text editor: core/geometry.js
- In geometry .js, search for two methods:
- scalarGaussCurvature(v)
- scalarMeanCurvature(v)

Implementing Discrete Gauss Curvature

One implementation of scalarGaussCurvature(v):

$$
K_{i}:=2 \pi-\sum \theta_{i}^{p q}
$$

```
let angleSum = 0.0; // will accumulate sum of angles
let h = v.halfedge; // start with any halfedge
do
{
    // get vertex positions for current triangle ijk
    // ("this" refers to the currently loaded mesh)
    let pi = this.positions[h.vertex];
    let pj = this.positions[h.next.vertex];
    let pk = this.positions[h.next.next.vertex];
    // compute interior angle at vertex i
    let u = (pj.minus(pi)).unit(); // unit vector from pi to pj
    let v = (pk.minus(pi)).unit(); // unit vector from pi to pk
    let theta = Math.acos( u.dot(v) ); // angle between u and v
    angleSum += theta; // accumulate angle sum
    h = h.twin.next; // move to next halfedge
}
while( h != v.halfedge ); // stop when we get back to beginning
return 2.0*Math.PI - angleSum; // return defect
```


Discrete Gaussian Curvature - Visualized

- If implemented correctly, should look like this:

K

Debugging in the Browser

- If it's not working, try taking a look at the debugger
- In Chrome: View \longrightarrow Developer \longrightarrow JavaScript Console

$\checkmark 10$	
Load Mesh	
Export Mesh	
Normals	Equally Weighted
Plot	Shaded \hat{v}
Show Normals	
Show Wireframe	
Close Controls	

Implementing Discrete Gauss Curvature

In practice, don't have to do quite so much work:

```
let angleSum = O.O; // will accumulate sum of angles
// iterate over "corners" rather than halfedges
// (really just halfedges in disguise...)
for (let c of v.adjacentCorners()) {
    angleSum += this.angle(c); // accumulate angle sum
}
return 2.0*Math.PI - angleSum; // return defect
```

(This is the code you'll find in the reference solution.)

Implementing Discrete Mean Curvature

This time, start with "high level" implementation:

```
let sum = 0.0; // will accumulate sum
// iterate over outgoing halfedges
for (let h of v.adjacentHalfedges()) {
    sum += 0.25 * this.length(h.edge) * this.dihedralAngle(h);
```

\}
return sum;

Discrete Mean Curvature - Visualized

- If implemented correctly, should look like this:

H

Discrete Principal Curvatures

- Given Gauss curvature K and mean curvature H, can easily solve for principal curvatures κ_{1}, κ_{2} :

Try it out on some other meshes...

- More meshes in the input/ subdirectory:

(Q: What do you notice about the total Gaussian curvature?)

Activity 2: Discrete Laplace-Beltrami

Discrete Laplace-Beltrami Operator

- Fundamental to geometry, PDEs
- Laplace, Poisson, heat equation, wave equation...
- "Swiss army knife" of geometry processing algorithms
- Easily discretized via cotan formula:

$$
(\Delta u)_{i}=\frac{1}{2 A_{i}} \sum_{i j}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(u_{j}-u_{i}\right)
$$

A_{i} - area of dual cell made by triangle circumcenters

Solving Discrete Equations

- Code for evaluating Laplace-Beltrami not much different from discrete curvatures
- But what about solving an equation, like a Poisson equation $\Delta u=f$?
- Becomes a system of linear equations (one per vertex):

$$
\frac{1}{2 A_{i}} \sum_{i j}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(u_{j}-u_{i}\right)=f_{i}
$$

- To solve numerically, need to encode as a matrix equation:

$$
L u=f
$$

$$
\mathrm{L} \in \mathbb{R}^{n \times n}
$$

$$
\mathrm{u}, \mathrm{f} \in \mathbb{R}^{n}
$$

Meshes and Matrices

- To express Poisson equation in matrix form, first need to index the mesh
- I.e., pick a bijection between the vertices and the integers $1, \ldots, n$
- Row i of matrix L encodes the linear equation corresponding to vertex i
- E.g., row 5 of the Laplace matrix:

$$
\begin{gathered}
5\left[\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
w & 0 & w & w & -5 w & 0 & w & w & 0 & 0 & 0 & 0
\end{array}\right] \\
\\
\mathrm{u} \in \mathbb{R}^{n} \Longrightarrow \quad(\mathrm{Lu})_{i}=\sum_{i j} w_{i j}\left(\mathrm{u}_{j}-\mathrm{u}_{i}\right)
\end{gathered}
$$

$$
(w=2 \cot (\pi / 3) / A)
$$

Sparse vs. Dense Matrices

- For large meshes, most entries of Laplace matrix will be zero
- Rather than store all zeros explicitly, encode by "sparse matrix"
- In code: express as list of Triplets
- (value, row, column)
- duplicates are summed

Making the System Symmetric

- Numerically, useful to decompose Laplace matrix L into two parts:
- mass matrix \mathbf{M} - diagonal matrix of dual areas A_{i}
- stiffness matrix \mathbf{C} - symmetric semidefinite matrix of cotan weights

$$
\frac{1}{2 A_{i}} \sum_{i j}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(u_{j}-u_{i}\right) \quad \mathrm{L}=\mathrm{M}^{-1} \mathrm{C}
$$

- Can now solve Poisson equation w/ efficient solvers for symmetric systems:

$$
\begin{aligned}
\mathrm{Lu} & =\mathrm{f} \quad \text { (not symmetric) } \\
\Longleftrightarrow \mathrm{Cu} & =\mathrm{Mf} \quad \text { (symmetric) }
\end{aligned}
$$

(This is how we'll do it in our code!)

Implementing a Discrete Poisson Equation

- As before, start in ddg-js_skeleton/ (we'll fill this one in)
- Open:
- in web browser: projects/poisson-problem/index.html
- in text editor: core/geometry.js
- Will implement methods to build our two matrices:
- massMatrix(vertexIndex)
- laplaceMatrix(vertexIndex)

Building the Mass Matrix

Diagonal matrix; just have to build a Triplet for each vertex

```
// "vertexIndex" specifies the index of each vertex
massMatrix(vertexIndex) {
    // get the number of vertices in the mesh
    let n = this.mesh.vertices.length;
    // initialize a list of triples for an n x n matrix
    let T = new Triplet(n, n);
    // loop over all vertices
    for (let v of this.mesh.vertices) {
        // get the index of this vertex
        let i = vertexIndex[v];
        // create a triplet on the diagonal
        T.addEntry(this.circumcentricDualArea(v), i, i);
    }
    // convert list of triplets to final sparse matrix
    return SparseMatrix.fromTriplet(T);
}
```


circumcentricDualArea(v)
(already implemented)

Building the Stiffness Matrix

Similar logic; now just have to loop over neighbors:
(make positive definite, for solver)

```
let n = this.mesh.vertices.length;
```

let n = this.mesh.vertices.length;
let T = new Triplet(n, n);
let T = new Triplet(n, n);
for (let v of this.mesh.vertices) {
for (let v of this.mesh.vertices) {
let i = vertexIndex[v]; // get index of this vertex
let i = vertexIndex[v]; // get index of this vertex
let sum = 1e-8; // (helps w/ numerics)
let sum = 1e-8; // (helps w/ numerics)
// iterate over outgoing halfedges
// iterate over outgoing halfedges
for (let h of v.adjacentHalfedges()) {
for (let h of v.adjacentHalfedges()) {
// get index of neighbor
// get index of neighbor
let j = vertexIndex[h.twin.vertex];
let j = vertexIndex[h.twin.vertex];
// set entry Lij to cotan weight
// set entry Lij to cotan weight
let weight = (this.cotan(h)+this.cotan(h.twin))/2;
let weight = (this.cotan(h)+this.cotan(h.twin))/2;
T.addEntry(-weight, i, j);
T.addEntry(-weight, i, j);
sum += weight; // accumulate diagonal weight
sum += weight; // accumulate diagonal weight
}
}
T.addEntry(sum, i, i); // set entry Lii
T.addEntry(sum, i, i); // set entry Lii
}
}
// convert list of triplets to final sparse matrix
// convert list of triplets to final sparse matrix
return SparseMatrix.fromTriplet(T);

```
return SparseMatrix.fromTriplet(T);
```

$$
\mathrm{L}_{i j}= \begin{cases}-\frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right), & i \neq j \\ -\sum_{j \neq i} \mathrm{~L}_{i j}, & i=j\end{cases}
$$

cotan (h)
(already implemented)

Solving the Poisson Equation

Now just solve linear system (already implemented in scalar-poisson-problem.js):

```
// index vertices
this.vertexIndex =
indexElements(geometry.mesh.vertices);
// build mass matrix
M = geometry.massMatrix(this.vertexIndex);
// build and *factor* laplace matrix
// (allows use to efficiently re-solve many
// Poisson equations w/ different right-hand sides)
C = geometry.laplaceMatrix(this.vertexIndex);
factoredC = C.chol(); // Cholesky factorization
// multiply right-hand side by mass matrix
let Mf = this.M.timesDense(f);
// solve linear system(s) using prefactored matrix
let u = factoredC.solvePositiveDefinite(Mf);
return u;
C = geometry.laplaceMatrix(this.vertexIndex);
factoredC \(=\) C.chol(); // Cholesky factorization
// multiply right-hand side by mass matrix
let Mf = this.M.timesDense(f);
// solve linear system(s) using prefactored matrix
let \(u=\) factoredC.solvePositiveDefinite(Mf);
return \(u\);
```


Poisson Equation on a Surface

- Solve for electrostatic potential φ corresponding to a given charge density ρ :

Activity III: Experiment

More Algorithms

- Many more algorithms from DDG can be implemented with surprisingly little work beyond what you've done today
- Common pattern:
- compute some local quantity (e.g., curvature)
- solve a Poisson-like equation
- possibly apply some more local computation
- (or do something like this in an iterative loop)
- Let's take a look at some examples...

.js

Heat \mathcal{E} Curvature Flow

- Poisson equation is stationary solution to heat flow ($\mathrm{w} /$ source term)
- Easy to implement heat flow using same matrices:

$$
\begin{aligned}
& \frac{d}{d t} u=\Delta u \quad \Longrightarrow \quad \begin{array}{l}
(\mathrm{I}+\tau \mathrm{C}) \mathrm{u}^{k+1}=\mathrm{Mu}^{k} \\
\mathrm{I} \in \mathbb{R}^{n \times n}-\quad \text { identity matrix } \\
\tau>0-\text { time step }
\end{array}
\end{aligned}
$$

- From here, can get mean curvature flow by making two small changes:
- replace \mathbf{u} with vertex positions of surface (i.e., surface immersion)
- update matrices M and C every time the surface changes

Mean Curvature Flow

Run from ddg-js_solutions/projects/geometric-flow/index.html

Geodesic Distance

- Can also find geodesic distance to one (or more) source points via a familiar pattern:

Algorithm 1 The Heat Method
I. Integrate the heat flow $\dot{u}=\Delta u$ for some fixed time t.
II. Evaluate the vector field $X=-\nabla u /|\nabla u|$.
III. Solve the Poisson equation $\Delta \phi=\nabla \cdot X$.

Geodesic Distance

Run from ddg-js_solutions/projects/geodesic-distance/index.html

for details, see Crane, Weischedel, \& Wardetzky, "The Heat Method for Distance Computation" (2017)

Additional Examples

- Many more algorithms boil down to solving Poisson-like equations via cotanLaplace matrix:
- conformal flattening (parameterization)
- Helmholtz-Hodge decomposition (vector-field-decomposition)
- direction field $w /$ prescribed singularities (direction-field-design)
- optimal transport
- shape descriptors
- Take a look at examples in ddg-js_solutions/projects/

Thanks!

- Thanks for participating! Let us know if you have any questions...

(See also: http://geometry.cs.cmu.edu/ddg)

AMS Short Course
 Discrete Differential Geometry

